Let $\text{Sym}(n)$ be the group of all permutations of n elements. If p_1, p_2 are two permutations such that p_1 and p_2 coincide in λ positions, the Hamming distance between p_1 and p_2 is the integer $d_{n}(p_1, p_2) = n - \lambda$.

A permutation array (PA) $\Gamma_{(n,d)}$ of size s and minimum distance d is a set of s permutations of n elements such that the distance between any two permutations is at least d.

Some data-transmission codes use PA’s of maximum size s with respect to n and d. We use the group $\text{Iso}(\text{Sym}(n))$ of isometries of $\text{Sym}(n)$ to study and construct PA’s.