Lax algebras, Approach spaces and its applications

Wannes Rosiers

Departement Wiskunde en Computerwetenschappen
Universiteit Antwerpen
Middelheimlaan 1
2020 Antwerpen
wannes.rosiers@ua.ac.be

(joint work with Prof. Dr. R. Lowen)

In mathematics, one often seeks a unified way to describe different objects. The Eilenberg-Moore or strict algebras for a certain monad (a functor and two natural transformations) allow us for example to describe similarly the category Set and the category CompHaus of compact Hausdorff spaces. We obtain these categories because we actually describe the equality in Set or the unique convergence of ultrafilters in CompHaus. In order to allow an ultrafilter to have more convergence points, we have to ‘relax’ the axioms of strict algebras. In stead of demanding equalities, we now allow inequalities. Using the same monads, we obtain in this way the category ord of ordered spaces and the category Top of topological spaces. The category Ap of approach spaces, a numerical generalization of topological spaces, is recently obtained as a category of lax algebras for a new monad. It still is not possible to describe the category Lip of Lipschitz spaces in the same way. We introduced a new monad and obtain a bigger category SLip as a category of lax algebras. Using the same terminology, we can give a new characterization of Ap, Top (a coreflective subcategory of Ap and SLip), Ord and Met of metric spaces.
References

