Hypothesis testing in non-standard situations

Davy Paindaveine

Université libre de Bruxelles

Godeaux Lecture, Brussels, May 2017

2 Hypothesis testing

3 Non-standard hypothesis testing (1)

Based on independent waiting times X_1, \ldots, X_n , how to estimate θ ?

Based on independent waiting times X_1, \ldots, X_n , how to estimate θ ?

Based on independent waiting times X_1, \ldots, X_n , how to estimate θ ?

Possible estimators $\hat{\theta}$ include

- $2\bar{X}_n = 2(\frac{1}{n}\sum_{i=1}^n X_i)$
- 2 Median (X_1, \ldots, X_n)
- $\max(X_1,\ldots,X_n)$
- $\max(X_1,\ldots,X_n) + \min(X_1,\ldots,X_n)$
- $\frac{n+1}{n} \max(X_1,\ldots,X_n)$
- $(n+1)\min(X_1,...,X_n)$

Possible estimators $\hat{\theta}$ include

- $2\bar{X}_n = 2(\frac{1}{n}\sum_{i=1}^n X_i)$
- 2 Median (X_1, \ldots, X_n)
- $max(X_1,\ldots,X_n)$
- $\max(X_1,\ldots,X_n) + \min(X_1,\ldots,X_n)$
- $\frac{n+1}{n} \max(X_1, \ldots, X_n)$
- $(n+1)\min(X_1,...,X_n)$

Possible estimators $\hat{\theta}$ include

- $2\bar{X}_n = 2(\frac{1}{n}\sum_{i=1}^n X_i)$
- 2 Median (X_1, \ldots, X_n)
- $\max(X_1,\ldots,X_n)$
- $\max(X_1,\ldots,X_n) + \min(X_1,\ldots,X_n)$
- $\frac{n+1}{n} \max(X_1,\ldots,X_n)$
- $(n+1)\min(X_1,...,X_n)$

- $2\bar{X}_n = 2(\frac{1}{n}\sum_{i=1}^n X_i)$ _____10.29
- $2 \operatorname{Median}(X_1, \ldots, X_n)$ _____11.47
- $\max(X_1, ..., X_n)$ _____9.44
- $\max(X_1, \ldots, X_n) + \min(X_1, \ldots, X_n)$ _____11.12
- $\frac{n+1}{n} \max(X_1, \ldots, X_n)$ _____11.33
- $(n+1)\min(X_1,\ldots,X_n)$ _____10.08

$$(n+1)\min(X_1,\ldots,X_n)\stackrel{\mathcal{D}}{\rightarrow} Z,$$

where Z has density $(1/\theta) \exp(-z/\theta)$ on the positive halfline.

and

$$\sqrt{n} \left(\underbrace{2 \operatorname{Median}(X_1, \dots, X_n) - \theta}_{\underline{\mathcal{P}}_{0}} \right) \xrightarrow{\mathcal{D}} \mathcal{N}(\mathbf{0}, \theta^2)$$

$$\sqrt{n} \left(\underbrace{2 \overline{X}_n - \theta}_{\underline{\mathcal{P}}_{0}} \right) \xrightarrow{\mathcal{D}} \mathcal{N}(\mathbf{0}, \theta^2/3)$$

$$n \left(\underbrace{\theta - \max(X_1, \dots, X_n)}_{\underline{\mathcal{P}}_{0}} \right) \xrightarrow{\mathcal{D}} Z$$

$$n \left(\underbrace{\theta - \max(X_1, \dots, X_n)}_{\underline{\mathcal{P}}_{0}} \right) \xrightarrow{\mathcal{D}} Z - \theta,$$

$$\xrightarrow{\underline{\mathcal{P}}_{0}}$$

with the same Z as above.

- Estimators may have different consistency rates ______(1st order)
- Estimators with a common rate may have different accuracies _ (2nd order)

2 Hypothesis testing

3 Non-standard hypothesis testing (1)

The amount of beer X is such that $P[a \le X \le b] = \int_a^b f(x) dx$, with f unknown

Our interest below is $\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$

- In estimation, you want to guess the value of μ
- In hypothesis testing, you only want to know whether (for a given μ_0)

 $\mathcal{H}_0: \mu \geq \mu_0$ (the "null")

or

$$\mathcal{H}_1: \mu < \mu_0$$
 (the "alternative")

(pick the μ_0 announced by the barman and sue him if \mathcal{H}_1 is shown to hold)

Based on a sample X_1, \ldots, X_n , the "test" associated with $B(\subset \mathbb{R}^n)$ rejects \mathcal{H}_0 in favour of \mathcal{H}_1 iff $(X_1, \ldots, X_n) \in B$.

Assume that $\sigma^2 = \operatorname{Var}[X_1] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx < \infty$. Fix $\alpha \in (0, 1)$.

The textbook "level- α " test rejects $\mathcal{H}_0: \mu \geq \mu_0$ in favour of $\mathcal{H}_1: \mu < \mu_0$ if

$$\bar{X}_n < \mu_0 - \frac{s}{\sqrt{n}} \underbrace{\Phi^{-1}(1-\alpha)}_{\approx 1.64 \text{ for } \alpha = 5\%},$$

where $s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ and $\Phi(z) = P[Z \le z]$ with $Z \sim \mathcal{N}(0, 1)$.

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

μ

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

μ

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

For *n* large,
$$P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

At any $\mu < \mu_0$, then $P_{\mu}[\mathcal{H}_0 \text{ is rejected}] \rightarrow 1 \text{ as } n \rightarrow \infty$ (consistency)

Consistency holds for all reasonable tests.

 \sim To discriminate between tests, consider increasingly challenging alternatives as the sample size *n* increases :

<i>X</i> ₁₁					from f_1 with mean $\mu_1 = \mu_0 - \nu_1 \tau$
<i>X</i> ₂₁	<i>X</i> ₂₂				from f_2 with mean $\mu_2 = \mu_0 - \nu_2 \tau$
÷		·			
X _{n1}	X _{n2}		Xnn		from f_n with mean $\mu_n = \mu_0 - \nu_n \tau$,
:				·	
•					

with $(\nu_n) \xrightarrow{>} 0$ and $\tau > 0$.

х

х

Since
$$P_{\mu}[\mathcal{H}_{0} \text{ is rejected}] \approx \Phi\left(\Phi^{-1}(\alpha) - \frac{\sqrt{n}(\mu - \mu_{0})}{\sigma}\right)$$
 for *n* large,
 $P_{\mu=\mu_{0}-\nu_{n}\tau}[\mathcal{H}_{0} \text{ is rejected}] \rightarrow \begin{cases} \alpha & \text{if } \nu_{n}n^{1/2} \to 0\\ \Phi(\Phi^{-1}(\alpha) + \tau/\sigma) & \text{if } \nu_{n} = n^{-1/2}\\ 1 & \text{if } \nu_{n}n^{1/2} \to \infty \end{cases}$

This test "sees" $n^{-1/2}$ -alternatives and is blind to less severe alternatives This is compatible with consistency (take $\nu_n \equiv 1$)

Tests may have different consistency rates ______ (1st order)
Tests with a common rate may have different accuracies _ (2nd order)

Assume that $f(\mu_0) > 0$. Then, for the test rejecting \mathcal{H}_0 if

 $Median(X_1,\ldots,X_n) < c_{\alpha},$

where c_{α} is such that the test erroneously rejects \mathcal{H}_0 at most with probability α ,

$$P_{\mu=\mu_0-\nu_n\tau}[\mathcal{H}_0 \text{ is rejected}] \rightarrow \begin{cases} \alpha & \text{if } \nu_n n^{1/2} \to 0\\ \Phi(\Phi^{-1}(\alpha) + 2f(\mu_0)\tau) & \text{if } \nu_n = n^{-1/2}\\ 1 & \text{if } \nu_n n^{1/2} \to \infty \end{cases}$$

- If $f(\mu_0) > 0$, then this test sees $n^{-1/2}$ -alternatives dominates the \bar{X}_n -test iff $2f(\mu_0) > \sigma^{-1}$ (2nd order) Assume that $f(\mu_0) > 0$. Then, for the test rejecting \mathcal{H}_0 if

 $Median(X_1,\ldots,X_n) < c_{\alpha},$

where c_{α} is such that the test erroneously rejects \mathcal{H}_0 at most with probability α ,

$$P_{\mu=\mu_0-\nu_n\tau}[\mathcal{H}_0 \text{ is rejected}] \rightarrow \begin{cases} \alpha & \text{if } \nu_n n^{1/2} \to 0\\ \Phi(\Phi^{-1}(\alpha) + 2f(\mu_0)\tau) & \text{if } \nu_n = n^{-1/2}\\ 1 & \text{if } \nu_n n^{1/2} \to \infty \end{cases}$$

If f(μ₀) > 0, then this test sees n^{-1/2}-alternatives dominates the X
n-test iff 2f(μ₀) > σ⁻¹ (2nd order)
If f(μ₀) = 0, then this test is blind to n^{-1/2}-alternatives! (1st order)

actually sees $n^{-1/4}$ -alternatives only

A barman with good days and bad days

A barman with good days and bad days

A barman with good days and bad days

A barman with good days and bad days

For the \bar{X}_n -test,

$$P_{\mu=\mu_0-\nu_n\tau}[\mathcal{H}_0 \text{ is rejected}] \rightarrow \begin{cases} \alpha & \text{if } \nu_n n^{1/2} \to 0\\ \Phi(\Phi^{-1}(\alpha)+\tau/\sigma) & \text{if } \nu_n = n^{-1/2}\\ 1 & \text{if } \nu_n n^{1/2} \to \infty \end{cases}$$

This test "sees" $n^{-1/2}$ -alternatives and is blind to less severe alternatives

Theorem

No tests can see alternatives that are less severe than these alternatives! (one says that "the $n^{-1/2}$ -alternatives are contiguous to \mathcal{H}_0 ")

The \bar{X}_n -test is thus rate-optimal

2 Hypothesis testing

In standard statistics, one observes

 X_1,\ldots,X_n

with values in \mathbb{R}^{p} . The sample space is the *p*-dimensional Euclidean space

In directional statistics, one observes

$$X_1,\ldots,X_n$$

with values in $S^{p-1} := \{x \in \mathbb{R}^p : ||x|| = \sqrt{x'x} = 1\}$. The sample space is the circle (p = 2), the sphere (p = 3), or a hypersphere $(p \ge 4)$

n = 148 cosmic ray directions on S^2

Directional statistics find applications in many fields, including

- *Earth sciences* : given the approximately spherical shape of the earth, spherical data arise naturally in earth sciences (p = 3)
- *Cosmology* : cosmic ray directions provide spherical data (*p* = 3)
- *Meteorology* : wind directions constitute natural circular data (p = 2)
- Zoology : study of the moving of animals. In which direction does an ant go when offered a target? (p = 2)
- Linguistics : clustering texts based on word frequencies (p >> 3)

• ...

On the basis of a random sample X_1, \ldots, X_n from a distribution P on S^{p-1} , we want to test

$$\mathcal{H}_0: \boldsymbol{P} = \mathrm{Unif}(\mathcal{S}^{p-1})$$
$$\mathcal{H}_1: \boldsymbol{P} \neq \mathrm{Unif}(\mathcal{S}^{p-1})$$

 X_1, \ldots, X_{100} from some $P \neq \text{Unif}(\mathcal{S}^{p-1})$

On the basis of a random sample X_1, \ldots, X_n from a distribution P on S^{p-1} , we want to test

$$\mathcal{H}_0: \boldsymbol{P} = \mathrm{Unif}(\mathcal{S}^{p-1})$$

 $\mathcal{H}_1: \boldsymbol{P} \neq \mathrm{Unif}(\mathcal{S}^{p-1})$

 X_1, \ldots, X_{100} from some $P \neq \text{Unif}(S^{p-1})$ Rayleigh: reject \mathcal{H}_0 if $np \|\bar{X}_n\|^2 > \chi^2_{p,1-\alpha}$ On the basis of a random sample X_1, \ldots, X_n from a distribution P on S^{p-1} , we want to test

$$\mathcal{H}_0: \boldsymbol{P} = \mathrm{Unif}(\mathcal{S}^{p-1})$$
$$\mathcal{H}_1: \boldsymbol{P} \neq \mathrm{Unif}(\mathcal{S}^{p-1})$$

 X_1, \dots, X_{100} from some $P \neq \text{Unif}(S^{p-1})$ Rayleigh: reject \mathcal{H}_0 if $np \|\bar{X}_n\|^2 > \chi^2_{p,1-\alpha}$

Under \mathcal{H}_0 , $np \|\bar{X}_n\|^2 \xrightarrow{\mathcal{D}} \chi_p^2$ as $n \to \infty$ (implementation requires that $n \gg p$)

 $Y \sim \chi_p^2$ iff $Y \stackrel{\mathcal{D}}{=} \sum_{i=1}^p Z_i^2$, where the Z_i 's are independent $\mathcal{N}(0, 1)$

We consider high dimensions (HD), where *p* is large (and $n \gg p$ does not hold) This requires a double-asymptotic framework: $n \to \infty$ and $p = p_n \to \infty$

→ We need to consider triangular arrays of the form

where, under \mathcal{H}_0 , observations in row *n* are sampled from Unif(\mathcal{S}^{p_n-1})

Then $R_n = np_n \|\bar{X}_n\|^2 \xrightarrow[n \to \infty]{\mathcal{D}} ???$

Heuristics: the fixed-p asymptotic result

$$R_n \xrightarrow[n \to \infty]{\mathcal{D}} \chi^2_p$$

leads to

$$\frac{R_n - \rho}{\sqrt{2\rho}} \xrightarrow[n \to \infty]{\mathcal{D}} \frac{\chi_{\rho}^2 - \rho}{\sqrt{2\rho}} = \frac{\chi_{\rho}^2 - \mathbb{E}[\chi_{\rho}^2]}{\sqrt{\operatorname{Var}[\chi_{\rho}^2]}} \xrightarrow[\rho \to \infty]{\mathcal{N}}(0, 1).$$

 \rightsquigarrow This suggests that, if $(p_n) \rightarrow \infty$ slowly enough,

$$\frac{\mathsf{R}_n-\mathsf{p}_n}{\sqrt{2\mathsf{p}_n}}\xrightarrow[n\to\infty]{\mathcal{D}}\mathcal{N}(0,1)$$

How fast may p_n go to infinity?

Theorem

If
$$p_n \to \infty$$
, then $\frac{R_n - p_n}{\sqrt{2p_n}} \xrightarrow[n \to \infty]{\mathcal{N}} \mathcal{N}(0, 1)$ under \mathcal{H}_0

Theorem

If
$$p_n \to \infty$$
, then $\frac{R_n - p_n}{\sqrt{2p_n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1)$ under \mathcal{H}_0

No restrictions on (p_n)!

The proof is based on a CLT for martingale differences; see Billingsley (1995)

Patrick Paul Billingsley (1925-2011): EB6 (E4-B2)

The proof is based on a CLT for martingale differences; see Billingsley (1995)

Patrick Paul Billingsley (1925-2011): EB6 (E4-B2)

The proof is based on a CLT for martingale differences; see Billingsley (1995)

Patrick Paul Billingsley (1925-2011): EB6 (E4-B2)

Theorem

If
$$p_n \to \infty$$
, then $\frac{R_n - p_n}{\sqrt{2p_n}} \xrightarrow[n \to \infty]{\mathcal{N}} \mathcal{N}(0, 1)$ under \mathcal{H}_0

The resulting test rejects \mathcal{H}_0 if

$$\frac{R_n - p_n}{\sqrt{2p_n}} > \Phi^{-1}(1 - \alpha)$$

or, equivalently,

$$\frac{R_n - p_n}{\sqrt{2p_n}} > \frac{\chi^2_{p_n, 1-\alpha} - p_n}{\sqrt{2p_n}}$$

This is Rayleigh!

Alternatives: FvML densities $x \mapsto c_{p,\kappa} \exp(\kappa x'\theta)$, with $\kappa > 0$

The larger κ , the more concentrated the distribution is about θ $\kappa \to 0$ corresponds to Unif(S^{p-1})

We consider alternatives associated with

where observations in row n are independent with density

 $x \mapsto c_{p,\kappa_n,f} f(\kappa_n x'\theta_n),$

where $\theta_n (\in S^{p_n-1})$, $\kappa_n (> 0)$, and $f : \mathbb{R} \mapsto \mathbb{R}^+$ monotone \nearrow with f(0) = f'(0) = 1

Theorem

Let (p_n) be a sequence of positive integers. Let (θ_n) be a sequence such that $\theta_n \in S^{p_n-1}$ for all n. Let (κ_n) be a positive sequence such that

$$\kappa_n = O\left(\sqrt{\frac{p_n}{n}}\right).$$

Assume that f''(0) exists. Then, these alternatives are contiguous to the null.

- LD: $p_n \equiv p \Rightarrow \kappa_n \sim 1/\sqrt{n}$ provides contiguity
- HD: if $p_n/n \rightarrow c > 0 \Rightarrow \kappa_n \equiv \kappa$ provides contiguity
- HHD: if $p_n/n \to \infty \Rightarrow$ some sequences $\kappa_n \to \infty$ provide contiguity

Theorem

The test rejecting \mathcal{H}_0 when

$$\sqrt{np_n}\,ar{X}'_n heta_n>\Phi^{-1}(1-lpha)$$

- (i) satisfies $P[\mathcal{H}_0 \text{ is rejected}] \to \alpha \text{ as } n \to \infty \text{ under } \mathcal{H}_0$
- (ii) sees the contiguous alternatives with $\kappa_n = \tau \sqrt{\frac{p_n}{n}}$
- (iii) has maximal asymptotic power among the tests satisfying (i)

1st-order optimality! 2nd-order optimality! However, the test rejecting \mathcal{H}_0 when

$$\sqrt{np_n}\,\overline{X}'_n\theta_n > \Phi^{-1}(1-\alpha)$$

is an oracle test (addressing the θ -specified problem).

Since θ_n is unspecified in practice, it is natural to replace θ_n with an estimator.

By symmetry, \bar{X}_n is expected to point in the direction of θ $\rightsquigarrow \hat{\theta}_n = \bar{X}_n / ||\bar{X}_n||$ is a natural estimator for θ However, the test rejecting \mathcal{H}_0 when

$$\sqrt{np_n}\,\overline{X}'_n\theta_n > \Phi^{-1}(1-\alpha)$$

is an oracle test (addressing the θ -specified problem).

Since θ_n is unspecified in practice, it is natural to replace θ_n with an estimator.

However, the test rejecting \mathcal{H}_0 when

$$\sqrt{np_n}\,\overline{X}'_n\theta_n > \Phi^{-1}(1-\alpha)$$

is an oracle test (addressing the θ -specified problem).

Since θ_n is unspecified in practice, it is natural to replace θ_n with an estimator. \rightsquigarrow Reject \mathcal{H}_0 for large values of

$$\sqrt{np_n}\,\bar{X}_n'\hat{\theta}_n = \sqrt{np_n}\,\bar{X}_n'\big(\bar{X}_n/\|\bar{X}_n\|\big) = \sqrt{np_n}\,\|\bar{X}_n\|,$$

or equivalently, for large values of $np_n \|\bar{X}_n\|^2$ (Rayleigh !!!!!)

Would Rayleigh then be (1st-order and 2nd-order) optimal ?

 \rightsquigarrow In HD, Rayleigh is blind to alternatives in $\kappa_n = \tau \sqrt{\frac{p_n}{n}}$

Are there HD alternatives that can be seen by Rayleigh?

Theorem

Let (p_n) be a sequence of positive integers diverging to ∞ . Let (θ_n) be a sequence such that $\theta_n \in S^{p_n-1}$ for all n. Then,

(i) if $\kappa_n = \tau p_n^{3/4} / \sqrt{n} \ (\tau > 0)$, the asymptotic power of Rayleigh is

$$1 - \Phi\left(\Phi^{-1}(1-\alpha) - \frac{\tau^2}{\sqrt{2}}\right).$$

(ii) if $\kappa_n = o(p_n^{3/4}/\sqrt{n})$, its asymptotic power is α .

In HD, Rayleigh is blind to contiguous alternatives in $\kappa_n = \tau p_n^{1/2} / \sqrt{n}$, but it can see alternatives in $\kappa_n = \tau p_n^{3/4} / \sqrt{n}$.

(In LD, both rates do coincide, so that Rayleigh is rate-optimal)

This raises natural questions for the θ -unspecified problem :

- Can a test perform as well as the oracle test ?
- If not, can a test see alternatives in $\kappa_n \sim p_n^{1/2} / \sqrt{n}$?
- If not, can a test see alternatives that are less severe than $\kappa_n \sim p_n^{3/4}/\sqrt{n}$?
- If not, would Rayleigh be not only 1st-order optimal but also 2nd-order optimal ?

If one restricts to rotation-invariant tests, we can answer the questions :

- Can a test perform as well as the oracle test ? No
- If not, can a test see alternatives in $\kappa_n \sim p_n^{1/2} / \sqrt{n}$? No
- If not, can a test see alternatives that are less severe than $\kappa_n \sim p_n^{3/4}/\sqrt{n}$? No
- If not, would Rayleigh be not only 1st-order optimal but also 2nd-order optimal ?

Yes

4 Non-standard hypothesis testing (2)

 X_1, \ldots, X_n randomly sampled from a density $x \mapsto c_{\rho,\kappa} f(\kappa x'\theta)$ over $S^{\rho-1}$, where $\theta \in S^{\rho-1}$ (signal direction), $\kappa > 0$ (signal strength) $f : \mathbb{R} \mapsto \mathbb{R}^+$ monotone \nearrow , with f(0) = f'(0) = 1

For κ small, inference on θ is challenging

We consider inference on θ (i.e., on the mode/direction of the signal) in the neighbourhood of $\kappa = 0$ (i.e., when the signal is weak)

n = 148 cosmic ray directions on S^2 κ small We consider triangular arrays of the form

٠

$$\begin{array}{cccc} X_{11} & & \text{with values in } \mathcal{S}^{p-1} \\ X_{21} & X_{22} & & \text{with values in } \mathcal{S}^{p-1} \\ \vdots & & \ddots \\ X_{n1} & X_{n2} & \dots & X_{nn} & & \text{with values in } \mathcal{S}^{p-1} \\ \vdots & & \ddots \end{array}$$

٠

where observations in row *n* are independent with density $\mathbf{x} \mapsto \mathbf{c}_{\mathbf{p},\kappa_n,f} f(\kappa_n \mathbf{x}'\theta_n)$, with $\theta_n (\in S^{p-1}), \kappa_n \to \mathbf{0}$, and $f : \mathbb{R} \mapsto \mathbb{R}^+$ monotone \nearrow with $f(\mathbf{0}) = f'(\mathbf{0}) = 1$ A point estimation result for $\hat{\theta}_n = \bar{X}_n / \|\bar{X}_n\|$...

Theorem

Under $P_{\theta,\kappa_n,f}^{(n)}$, with $\kappa_n = \sqrt{p}\xi\eta_n$, we have the following: (i) For $\eta_n \equiv 1$,

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \frac{C_{p,f}}{\xi^2}(I_p - \theta \theta')\right) \text{ for some } C_{p,f} > 0;$$

(ii) For $\eta_n \to 0$ with $\sqrt{n} \eta_n \to \infty$,

$$\sqrt{n}\eta_n(\hat{\theta}_n-\theta)\stackrel{\mathcal{D}}{\rightarrow}\mathcal{N}\left(0,\frac{1}{\xi^2}(I_p-\theta\theta')\right)$$

(iii) For $\sqrt{n} \eta_n \rightarrow 1$,

 $\hat{\theta}_n \stackrel{\mathcal{D}}{\to} \frac{Z}{\|Z\|}, \quad with \ Z \sim \mathcal{N}(\xi \theta, I_p)$

(iv) For $\sqrt{n}\eta_n \to 0$, $\hat{\theta}_n \stackrel{\mathcal{D}}{\to}$ the uniform distribution over \mathcal{S}^{p-1} .

We want to test \mathcal{H}_0 : $\theta = \theta_0$, where θ_0 is fixed.

• The Wald test rejects \mathcal{H}_0 if

$$S_{n} := \frac{n(p-1)(\bar{X}'_{n}\theta_{0})^{2}}{1 - \frac{1}{n}\sum_{i=1}^{n}(X'_{i}\theta_{0})^{2}} (\hat{\theta}_{n} - \theta_{0})'(I_{p} - \theta_{0}\theta'_{0})(\hat{\theta}_{n} - \theta_{0}) > \chi^{2}_{p-1,1-\alpha},$$

with $\hat{\theta}_n = \bar{X}_n / \| \bar{X}_n \|$

• The Watson rejects \mathcal{H}_0 if

$$W_{n} := \frac{n(p-1)}{1 - \frac{1}{n} \sum_{i=1}^{n} (X'_{i}\theta_{0})^{2}} \| (I_{p} - \theta_{0}\theta'_{0})\bar{X}_{n} \|^{2} > \chi^{2}_{p-1,1-\alpha}.$$

For κ fixed, both tests are asymptotically equivalent

Null rejection frequencies of Watson and Wald (at $\alpha = 5\%$) FvML case with $\kappa = \kappa_{\ell} = \sqrt{p}n^{-\ell/6}$

With $\kappa_n = \sqrt{p} \xi \eta_n + o(\eta_n)$, we have the following as $n \to \infty$ under $P_{\theta_0,\kappa_n,f}^{(n)}$: (i) if $\eta_n \equiv 1$, then

$$W_n = S_n + o_{\mathrm{P}}(1) \stackrel{\mathcal{D}}{
ightarrow} \chi^2_{p-1}$$

(ii) if $\eta_n \to 0$ with $\sqrt{n} \eta_n \to \infty$, then

$$W_n = S_n + o_{\mathrm{P}}(1) \stackrel{\mathcal{D}}{
ightarrow} \chi^2_{p-1}$$

(iii) if $\sqrt{n}\eta_n \rightarrow 1$, then

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{p-1}$$
 and $S_n \xrightarrow{\mathcal{D}} \left(1 + \frac{Q}{(Z+\xi)^2}\right)^{-1} Q$ with $Q \sim \chi^2_{p-1} \sqcup L$

(iv) if $\sqrt{n} \eta_n \rightarrow 0$, then

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{\rho-1} \quad and \quad S_n \xrightarrow{\mathcal{D}} \left(1 + \frac{Q}{Z^2}\right)^{-1} Q \quad with \quad \begin{array}{c} Q \sim \chi^2_{\rho-1} \\ Z \sim \mathcal{N}(0,1) \end{array} \ \bot \bot$$

With $\kappa_n = \sqrt{p} \xi \eta_n + o(\eta_n)$, we have the following as $n \to \infty$ under $P_{\theta_0,\kappa_n,f}^{(n)}$: (i) if $\eta_n \equiv 1$, then

$$\mathcal{W}_n = \mathcal{S}_n + o_{\mathrm{P}}(1) \stackrel{\mathcal{D}}{
ightarrow} \chi^2_{p-1}$$

(ii) if $\eta_n \to 0$ with $\sqrt{n} \eta_n \to \infty$, then

$$W_n = S_n + o_{\mathrm{P}}(1) \stackrel{\mathcal{D}}{
ightarrow} \chi^2_{p-1}$$

(iii) if $\sqrt{n} \eta_n \rightarrow 1$, then

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{p-1}$$
 and $S_n \xrightarrow{\mathcal{D}} \left(1 + \frac{Q}{(Z+\xi)^2}\right)^{-1} Q$ with $Q \sim \chi^2_{p-1}$ \perp

(iv) if $\sqrt{n} \eta_n \rightarrow 0$, then

$$W_n \xrightarrow{\mathcal{D}} \chi_{p-1}^2$$
 and $S_n \xrightarrow{\mathcal{D}} \left(1 + \frac{Q}{Z^2}\right)^{-1} Q$ with $Q \sim \chi_{p-1}^2$ \perp

Watson is robust to arbitrary small departures from uniformity Wald is not

Of course such robustness should not be obtained at the expense of power...

With $\kappa_n = \sqrt{p}\xi\eta_n + o(\eta_n)$ and $\tau_n \to \tau$, we have that, as $n \to \infty$ under $\mathbb{P}^{(n)}_{\theta_0 + \nu_n \tau_n, \kappa_n, f}$, (*i*) if $\eta_n \equiv 1$, then, for $\nu_n = 1/\sqrt{n}$,

$$W_n = S_n + o_{\mathrm{P}}(1) \xrightarrow{\mathcal{D}} \chi^2_{\rho-1} \left(\frac{\xi^2}{C_{\rho,f}} \left\| \tau \right\|^2 \right)$$

(ii) if $\eta_n \to 0$ with $\sqrt{n} \eta_n \to \infty$, then, for $\nu_n = 1/(\sqrt{n} \eta_n)$,

$$W_n = S_n + o_{\mathbb{P}}(1) \xrightarrow{\mathcal{D}} \chi^2_{\rho-1}(\xi^2 \|\tau\|^2)$$

(iii) if $\sqrt{n} \eta_n \rightarrow 1$, then, for $\nu_n \equiv 1$,

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{\rho-1} \left(\frac{1}{4} \xi^2 \| \tau \|^2 (4 - \| \tau \|^2) \right) \quad and \quad S_n \xrightarrow{\mathcal{D}} \dots$$

(iv) if $\sqrt{n} \eta_n \rightarrow 0$, then, for $\nu_n \equiv 1$,

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{p-1} \quad and \quad S_n \xrightarrow{\mathcal{D}} \left(1 + \frac{Q}{Z^2}\right)^{-1} Q \quad with \quad \begin{array}{c} Q \sim \chi^2_{p-1} \\ Z \sim \mathcal{N}(0,1) \end{array} \ \bot \bot$$

With $\kappa_n = \sqrt{p}\xi\eta_n + o(\eta_n)$ and $\tau_n \to \tau$, we have that, as $n \to \infty$ under $\mathbb{P}^{(n)}_{\theta_0 + \nu_n \tau_n, \kappa_n, f}$, (*i*) if $\eta_n \equiv 1$, then, for $\nu_n = 1/\sqrt{n}$,

$$W_n = S_n + o_{\mathrm{P}}(1) \xrightarrow{\mathcal{D}} \chi^2_{\rho-1} \left(\frac{\xi^2}{C_{\rho,f}} \|\tau\|^2 \right)$$

(ii) if $\eta_n \to 0$ with $\sqrt{n} \eta_n \to \infty$, then, for $\nu_n = 1/(\sqrt{n} \eta_n)$,

$$W_n = S_n + o_{\mathrm{P}}(1) \xrightarrow{\mathcal{D}} \chi^2_{\rho-1}\left(\xi^2 \|\tau\|^2\right)$$

(iii) if $\sqrt{n} \eta_n \rightarrow 1$, then, for $\nu_n \equiv 1$,

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{\rho-1} \left(\frac{1}{4} \xi^2 \| \tau \|^2 (4 - \| \tau \|^2) \right) \quad and \quad S_n \xrightarrow{\mathcal{D}} \dots$$

(iv) if $\sqrt{n} \eta_n \rightarrow 0$, then, for $\nu_n \equiv 1$,

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{p-1}$$
 and $S_n \xrightarrow{\mathcal{D}} \left(1 + \frac{Q}{Z^2}\right)^{-1} Q$ with $Q \sim \chi^2_{p-1} \perp Z \sim \mathcal{N}(0,1)$

With $\kappa_n = \sqrt{p}\xi\eta_n + o(\eta_n)$ and $\tau_n \to \tau$, we have that, as $n \to \infty$ under $\mathbb{P}^{(n)}_{\theta_0 + \nu_n \tau_n, \kappa_n, f}$, (*i*) if $\eta_n \equiv 1$, then, for $\nu_n = 1/\sqrt{n}$,

$$W_n = S_n + o_{\mathrm{P}}(1) \xrightarrow{\mathcal{D}} \chi^2_{\rho-1} \left(\frac{\xi^2}{C_{\rho,f}} \left\| \tau \right\|^2 \right)$$

(ii) if $\eta_n \to 0$ with $\sqrt{n} \eta_n \to \infty$, then, for $\nu_n = 1/(\sqrt{n} \eta_n)$,

$$W_n = S_n + o_{\mathrm{P}}(1) \stackrel{\mathcal{D}}{\rightarrow} \chi^2_{\rho-1}(\xi^2 \|\tau\|^2)$$

(iii) if $\sqrt{n} \eta_n \rightarrow 1$, then, for $\nu_n \equiv 1$,

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{\rho-1} \left(\frac{1}{4} \xi^2 \| \tau \|^2 (4 - \| \tau \|^2) \right) \quad and \quad S_n \xrightarrow{\mathcal{D}} \dots$$

(iv) if $\sqrt{n} \eta_n \rightarrow 0$, then, for $\nu_n \equiv 1$,

$$W_n \xrightarrow{\mathcal{D}} \chi^2_{p-1} \quad and \quad S_n \xrightarrow{\mathcal{D}} \left(1 + \frac{Q}{Z^2}\right)^{-1} Q \quad with \quad \begin{array}{c} Q \sim \chi^2_{p-1} \\ Z \sim \mathcal{N}(0,1) \end{array} \perp$$

Non-null rejection frequencies of Watson and Wald (at $\alpha = 5\%$) FvML case with $\kappa = \kappa_{\ell} = \sqrt{p}n^{-\ell/6}$

This raises natural questions, in any given regime (i)-(iv):

- Is there a test that can see less severe alternatives than Watson can? No! Watson is adaptively 1st-order optimal
- If not, is Watson even 2nd-order optimal?
 Yes! But in a sense that depends on the regime :

In (i), Watson is 2nd-order optimal for $f = \exp$ only In (ii), Watson is 2nd-order optimal uniformly in fIn (iii), Watson is 2nd-order optimal uniformly in f but only locally-in- τ In (iv), Watson is 2nd-order optimal uniformly in f, but in a degenerate way

Watson and Wald 95% confidence zones for θ

Cutting, C., Paindaveine, D., and Verdebout, T. (2017). Testing uniformity on high-dimensional spheres against monotone rotationally symmetric alternatives. *Annals of Statistics*, to appear.

Paindaveine, D., and Verdebout, T. (2017). Inference on the mode of weak directional signals : A Le Cam perspective on hypothesis testing near singularities. *Annals of Statistics* 45, 800-832.

Thank you for your attention