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Who is Michel Talagrand?



Quotes by Talagrand

• “Ce que j’aime, c’est de couper des intervalles en rondelles.”
• “La théorie de la mesure m’a graduellement amené à apprendre

des probabilités, même si ce que j’appelle par ce nom n’est pas
toujours reconnu comme tel par les vrais probabilistes.”

• “The first advice I received from my advisor Gustave Choquet
was as follows: always consider a problem under the minimum
structure in which it makes sense. By following it, one is
naturally led to study problems with a kind of minimal and
intrinsic structure. Not so many structures are really basic, and
one may hope that these will remain of interest for a very long
time.”

• “The success of the approach of studying minimal structures has
ultimately to be judged by its results.”
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Context of Talagrand mathematical youth

• PhD thesis with Choquet on functional analysis, “but the field
of his mathematics was ending and not beginning”.

• Pisier showed him links between the geometry of Banach spaces,
probability (mostly Gaussian measures), random Fourier series.

• Pisier introduced him to the field of Gaussian processes around
1983. Few years later, Talagrand had solved the major
conjecture in the field and drew far-reaching consequences in
the above fields.

• Around the same time, Milman convinced him of the
importance of concentration of measure.

• He also revolutionized the field by introducing “elementary
enough” yet powerful ideas.
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Talagrand’s philosophy

• Les variables gaussienses sont des compas qui arpentent le globe
terrestre en tous sens, lui donnant son équilibre et son harmonie.

• Gaussian variables are a minimal structure that arise everywhere:
in Probability, in Geometry, in Functional Analysis, in Statistical
Physics.

• Gaussian inequalities serve as an idealised model, from which
other models can be studied by “perturbation”.

• Quantifying deviations from or similarities to the Gaussian case
allows to classify other models / space.
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Crash course on Gaussian analysis



The Gaussian space

• The standard Gaussian measure on ℝ is the probability measure

𝛾(𝚍𝑥) ≔ exp(−
𝑥2

2 )(2𝜋)
−1∕2.

• The Gaussian space is (Ω,𝔚,𝐏) ≔ (ℝℕ,𝔅(ℝℕ), 𝛾⊗ℕ).

• We consider the coordinates

𝑔𝑖(𝜔) ≔ 𝜔𝑖, 𝜔 = (𝜔𝑖) ∈ Ω.

• (𝑔𝑖) is a sequence of independent standard Gaussian variables.
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Why are Gaussians important

• �̂�(𝑡) ≔ ∫ ei𝑡𝑥𝛾(𝚍𝑥) = e−𝑡2∕2 ≃ 𝛾(𝑡).

• Central limit theorem, statistical tests.

• Free case (no interaction) of infinite-dimensional models
(statistical mechanics, SPDEs).

• Gaussian variables represent all the metric spaces embedded in
the Hilbert space.

Theorem
𝓁2(ℕ) embeds bi-Lipschitz in 𝐿𝑞(0, 1), 1 ≤ 𝑞 <∞.
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Solving a question of Banach with Gaussians

Theorem
𝓁2(ℕ) embeds bi-Lipschitz in 𝐿𝑞(0, 1), 1 ≤ 𝑞 <∞.

Proof.

• 𝑋∶ 𝓁2(ℕ) ∋ 𝑡 ↦ 𝑋𝑡 ≔
∑

𝑖 𝑡𝑖𝑔𝑖.

• Converging in 𝐿2(𝐏), and 𝐋𝐚𝐰[𝑋𝑡] = 𝐋𝐚𝐰
[
‖𝑡‖𝓁2𝑔1

]
.

• Thus, ‖𝑋𝑡‖𝐿𝑞 = ‖𝑡‖𝓁2Γ
(𝑞+1

2

)1∕𝑞
𝜋−𝑞∕22−1∕2.
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Gaussian processes

• For 𝑇 ⊂ 𝓁2(ℕ), the Gaussian process over 𝑇 is
(𝑋𝑡 ≔

∑
𝑖 𝑡𝑖𝑔𝑖 ∶ 𝑡 ∈ 𝑇).

• 𝑑(𝑡, 𝑠) ≔ ‖𝑠 − 𝑡‖𝓁2(ℕ) = 𝐄
[
(𝑋𝑡 − 𝑋𝑠)2

]1∕2
.

• In general, one is interested in process indexed not by 𝓁2(ℕ) but
rather by:

• the time ℝ+ ⇝ Brownian motion,
• the complex plane ℂ⇝ Bargman–Fock,
• or even a function space ⇝ the Gaussian free field.

It is known all Gaussian processes arise from the Hilbert space
representation.

• Important to forget any Euclidean or metric structure on the
initial index set and work in the Hilbert setting. Otherwise, the
ideas are polluted by the extra structure that one would want to
use inevitably.
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Supremum of Gaussian processes



Supremum of Gaussian processes

• What is the order of 𝑆(𝑇) ≔ 𝐄 sup𝑡∈𝑇 𝑋𝑡 − 𝑋𝑡0?

• 𝑆(𝑇) = ∫ ∞0 𝐏
[
sup𝑡∈𝑇(𝑋𝑡 − 𝑋𝑡0) ≥ 𝑢

]
𝚍𝑢.

• 𝐏
[
sup𝑡∈𝑇(𝑋𝑡 − 𝑋𝑡0) ≥ 𝑢

]
≤
∑

𝑡∈𝑇 𝐏
[
(𝑋𝑡 − 𝑋𝑡0) ≥ 𝑢

]
.

Key Fact

𝐏[|𝑋𝑡 − 𝑋𝑠| ≥ 𝑢] ≤ 2 exp(−
𝑢2

2𝑑(𝑠, 𝑡)2
),

with 𝑑(𝑠, 𝑡) = 𝐄
[
(𝑋𝑡 − 𝑋𝑠)2

]1∕2
= ‖𝑡 − 𝑠‖𝓁2(ℕ).

• Before Talagrand, results by Kolmogorov, Dudley, Sudakov,
Fernique and more based on the distance 𝑑 and the chaining.
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Chaining 101

• 𝑇 finite.

• Consider an increasing sequence (𝑇𝑛) of approximating sets.

• For all 𝑛, choose 𝜋𝑛(𝑡) ∈ 𝑇.

• For 𝑛 large enough 𝑇𝑛 = 𝑇 thus 𝜋𝑛(𝑡) = 𝑡.

• Trivially 𝑋𝑡 − 𝑋𝑡0 =
∑

𝑛(𝑋𝜋𝑛(𝑡) − 𝑋𝜋𝑛−1(𝑡)).

• Different choices of (𝑇𝑛) and (𝜋𝑛) together with the key fact

𝐏[|𝑋𝑡 − 𝑋𝑠| ≥ 𝑢] ≤ 2 exp(−
𝑢2

2𝑑(𝑠, 𝑡)2
),

yield different bound.
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Supremum of Gaussian processes before Talagrand

Theorem (Dudley)
Choose (𝑇𝑛) with cardinality as small as possible such that
∀𝑡 ∈ 𝑇,∃𝑠 ∈ 𝑇𝑛, 𝑑(𝑡, 𝑢) ≤ 2−𝑛, then

𝑆(𝑇) ≔ 𝐄 sup
𝑡∈𝑇

𝑋𝑡 ≤ 𝐶
∑

𝑛
2−𝑛

√
log |𝑇𝑛|.

Theorem (Fernique)
If |𝑇𝑛| ≤ 22𝑛 , then 𝑆(𝑇) ≤ 𝐶 sup𝑡∈𝑇

∑
𝑛 2

𝑛∕2𝑑(𝑡, 𝑇𝑛). Equivalently,
with

𝛾𝑝(𝑇, 𝑑) ≔ inf
(𝑇𝑛)

sup
𝑡∈𝑇

∑

𝑛
2𝑛∕𝑝𝑑(𝑡, 𝑇𝑛),

𝑆(𝑇) ≤ 𝐶𝛾2(𝑇, 𝑑).
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Talagrand’s main contribution

Theorem (Talagrand)
1
𝐶
𝛾2(𝑇, 𝑑) ≤ 𝑆(𝑇) ≤ 𝐶𝛾2(𝑇, 𝑑).

• 𝛾2 is the correct object to capture the size of a Gaussian
process.

• Despite being very naive, the chaining when done optimal
completely settles the question of the size of a Gaussian process.
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Consequences of Talagrand’s result and approach

• Comparison theorems: if a non-Gaussian process (𝑌𝑡) satisfies

𝐏[|𝑌𝑠 − 𝑌𝑡| ≥ 𝑢] ≤ 2 exp(− 𝑢2

2𝑑2(𝑠,𝑡)
), then 𝐄 sup𝑡∈𝑇 𝑌𝑡 ≤ 𝐶𝛾2.

• Stable processes: same as Gaussian but 𝓁2 ↔ 𝓁𝑝 (1 < 𝑝 < 2),
then similar results but 𝛾2 ↔ 𝛾𝑞 with 1

𝑝
+ 1

𝑞
= 1.

• Deterministic orthogonal series and random Fourier series.

• Geometry of metric spaces: 𝛾2(𝑇, 𝑑) for other spaces.

• The Bernoulli conjecture about all the possible ways to bound
the process

∑
𝜀𝑖𝑡𝑖 (solved by Bednorz and Latała in 2014).

• See Talagrand’s book Lower Bounds for Stochastic Processes.
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Concentration of measure



The philosophy of the concentration of measure

• In a metric measure space (𝐸, 𝑑, 𝜇) trying to quantify how fast
the measure of a set increases as the set is enlarged metrically.

• Similarly control of the deviation of Lipschitz functions
𝜇(|𝑓 − 𝜇(𝑓)| ≥ 𝑡).

• In high dimension Lipschitz functions are almost constant.

• Similarly, if 𝜇(𝐴) ≥ 1∕2, then 𝐴𝑡 ≔ {𝑥 ∈ 𝐸 ∶ 𝑑(𝑥,𝐴) ≤ 𝑡} is
almost the whole space.
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Examples

• On the round sphere 𝕊𝑛−1, with normalised Haar measure 𝜎𝑛−1

𝜎𝑛−1(|𝑓 − 𝜎𝑛−1(𝑓)| ≥ 𝑡) ≤
(𝜋
8

)1∕2
exp

(
−(𝑛 − 2)𝑡2∕2

)
.

• On ℝ𝑛, with the standard Gaussian measure 𝛾𝑛

𝛾𝑛(|𝑓 − 𝛾𝑛(𝑓)| ≥ 𝑡) ≤ 1
2e

−𝑡2∕2.
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Some issues with concentration of measure

• Dimension dependence: (𝐸, 𝑑, 𝜇) might satisfy the
concentration but not the product space (𝐸𝑛, 𝑑𝑛, 𝜇𝑛).

• Distance dependent: need a distance on 𝐸 which is not always
here when studying probability, especially discrete models.

• No necessary and sufficient criterion: can be deduced from
isoperimetric inequalities and other geometric functional
inequalities, such as the Poincaré / spectral gap, but in general
it is much weaker.

16



Talagrand’s main contributions

• Talagrand inequality: characterizing dimension-free Gaussian
concentration of measures in terms of relative entropy and
optimal transport.

• Concentration in product spaces: on a arbitrary probability
space (𝐸, 𝜇) construct some distances on the product space and
quantifies the associated concentration of measure phenomenon.
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Concentration in product space

• Too technical to give details but the distance looks like

𝑑𝑛((𝑥𝑖), (𝑦𝑖)) =
𝑛∑

𝑖=1
ℎ(𝑥𝑖, 𝑦𝑖)1𝑥𝑖≠𝑦𝑖 .

• Applied by Talagrand to solve major questions regarding:
• Percolation.
• Spin glass theory.
• Random graphs.

• Still highly used today. Still being understood and revisited.
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Talagrand inequality

• Relative entropy: 𝐄𝐧𝐭(𝜈 ||| 𝜇) ≔ ∫ log 𝚍𝜈
𝚍𝜇
𝚍𝜈.

• Transportation cost: 𝒯2(𝜈1, 𝜈2) ≔ inf ∫ 𝑑2(𝑥, 𝑦)𝜋(𝚍𝑥𝚍𝑦),
where the infimum over all the couplings 𝜋 of 𝜇 and 𝜈.

• 𝜇 satisfies the Talagrand inequality provided

𝒯2(𝜈1, 𝜈2) ≤ 2𝐄𝐧𝐭(𝜈1 | 𝜇) + 2𝐄𝐧𝐭(𝜈2 ||| 𝜇), ∀𝜈1, 𝜈2.
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Talagrand inequality

Theorem (Talagrand)

• If 𝜇 satisfies the Talagrand inequality, then so does 𝜇𝑛 on the
product space.

• If 𝜇 satisfies the Talagrand inequality, then it satisfies Gaussian
concentration of measure

𝜇(|𝑓 − 𝜇(𝑓)| ≥ 𝑡) ≤ 1
2e

−𝑡2∕2.

• The standard Gaussian measure satisfies the Talagrand
inequality.
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Legacy of Talagrand’s inequality

• In my opinion, the most important inequality in analysis and
probability together with the logarithmic Sobolev inequality.

• Shaped the theory of optimal transport, functional inequalities,
and more up to today.

• Ricci curvature in non-smooth continuous spaces.
• Relationship with coercive inequalities.
• Transport-entropy inequalities, mostly for discrete spaces.
• Theory of boolean functions.

• What happens when one changes the transportation or the
entropy.

• Non-product, that is non-independent, models.
• Random matrix.
• Statistical physics.
• Point processes.
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Sketch of proof for the Gaussian

• Inequality on the two-point space {−1,+1} with
𝜇 = 1

2
(𝛿−1 + 𝛿1).

• Use the stability by products to write an inequality for 𝜇𝑛.

• Use an easily-established stability by Lipschitz maps to write an
inequality for pushforward of 𝜇𝑛 by 1

√
𝑛

∑𝑛
𝑖=1 𝑥𝑖.

• Take 𝑛 →∞ and use the central limit theorem.
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Proof of the concentration of measure

• Take 𝐴 ⊂ 𝐸 and 𝐵 = 𝐸 ⧵ 𝐴𝑡 for 𝑡 > 0.

• Take 𝜈1 =
1𝐴
𝜇(𝐴)

𝜇 and 𝜈2 =
1𝐵
𝜇(𝐵)

𝜇.

• Then 𝒯2(𝜈1, 𝜈2) ≥ 𝑡2.

• 𝐄𝐧𝐭(𝜈1 | 𝜇) = − log𝜇(𝐴),
𝐄𝐧𝐭(𝜈2 ||| 𝜇) = − log𝜇(𝐵) = − log(1 − 𝜇(𝐴𝑡)).

• 𝑡2 ≤ −2 log𝜇(𝐴) − 2 log(1 − 𝜇(𝐴𝑡)).
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Spin glasses and the Parisi formula



Statistical mechanics 101

• System of spins 𝜎 = (𝜎𝑖) with 𝜎𝑖 ∈ {±1}.
• Interacting with only pairwise interaction.
• Undergoing a thermal agitation at temperature 1∕𝛽.
• With an external force ℎ.
• The Hamiltonian for 𝑛 spins is

𝐻𝑛(𝜎) ≔ − 1
√
𝑛

∑

𝑖<𝑗
𝐽𝑖𝑗𝜎𝑖𝜎𝑗 − ℎ

∑
𝜎𝑖.

• The partition function

𝑍𝑛,𝛽 ≔
∑

𝜎
exp(−𝛽𝐻𝑛(𝜎)),

• The free energy, if it exists

𝐹(𝛽) ≔ lim
𝑛→∞

1
𝑛 log𝑍𝑛,𝛽 . 24



The Sherrington–Kirkpatrick Hamiltonian

• Here the interactions are random, more precisely with 𝑔𝑖𝑗
independent standard Gaussian variables

𝐻𝑛(𝜎) = − 1
√
𝑛

∑

𝑖<𝑗
𝑔𝑖𝑗𝜎𝑖𝜎𝑗 − ℎ

∑

𝑖
𝜎𝑖.

• This can be seen as a Ising model in a disordered, that is
random, environment.

• Thus the partition function is a priori random and one is
interested by the average

1
𝑛 𝐄[log

∑

𝜎
exp(−𝛽𝐻𝑛(𝜎))].

• It was known that the large 𝑛 limit 𝑓(𝛽) exists, although the
non average (random) limit 𝐹(𝛽) might not exist.
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The Parisi ansatz

• For reasons I don’t understand, the physicist had conjectured
that

𝑓(𝛽) = inf
𝑞≥0

{
𝛽2

4 (1 − 𝑞)2 + ∫ log cosh(𝑥𝛽
√
𝑞 + ℎ)𝛾(𝚍𝑥)}+log 2.

• Talagrand managed to rigorously prove this formula.

• Don’t really understand the proof. Some relations with the
supremum of Gaussian processes: for ℎ = 0,
lim𝛽→∞

1
𝛽
log𝑍𝑛,𝛽 = sup𝜎𝐻𝑛(𝜎).

• Behind the mere proof brought in new ideas to study spin
glasses.
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Concluding thoughts



Things I did not talk about

• Lots of works in functional analysis in the 1970s

• Work on Maharam’s conjecture.
• Around 75s suggested that the conjecture was false and

proposed an alternative.
• His conjecture proved by others in the 80s.
• Disproved himself the initial conjecture in 2008!

• The matching problem.

• Interest for the theory of computation and information.

• Probably more I am not even aware of!
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What Talagrand teaches us about mathematics

• Gaussians serve as a fundamental and unifying element in
mathematics.

• The boundary of mathematical fields are porous and ambiguous.
Probability could show up when you least expect it!

• Maths is about hard-work, patience , perseverance, starting
from simple concept, and a bit of luck.

• Next time you are stuck on a problem:
• Look for that minimalistic structure in which your problem

makes sense.
• See if you can then formulate it, and hopefully solve it, for

Gaussians.
• Go back to your initial problem with the extra knowledge you

gain from the understanding of the Gaussian case.

28



Thank you for your attention
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