For the Love of Gaussians

Celebrating the Work of Michel Talagrand

Ronan Herry Société mathématique de Belgique, Recent Breakthroughs 2024

Université Libre de Bruxelles

Who is Michel Talagrand?

- "Ce que j'aime, c'est de couper des intervalles en rondelles."
- "La théorie de la mesure m'a graduellement amené à apprendre des probabilités, même si ce que j'appelle par ce nom n'est pas toujours reconnu comme tel par les *vrais* probabilistes."
- "The first advice I received from my advisor Gustave Choquet was as follows: always consider a problem under the minimum structure in which it makes sense. By following it, one is naturally led to study problems with a kind of minimal and intrinsic structure. Not so many structures are really basic, and one may hope that these will remain of interest for a very long time."
- "The success of the approach of studying minimal structures has ultimately to be judged by its results."

Context of Talagrand mathematical youth

- PhD thesis with Choquet on functional analysis, "but the field of his mathematics was ending and not beginning".
- Pisier showed him links between the geometry of Banach spaces, probability (mostly Gaussian measures), random Fourier series.
- Pisier introduced him to the field of Gaussian processes around 1983. Few years later, Talagrand had solved the major conjecture in the field and drew far-reaching consequences in the above fields.
- Around the same time, Milman convinced him of the importance of concentration of measure.
- He also revolutionized the field by introducing "elementary enough" yet powerful ideas.

Talagrand's philosophy

- Les variables gaussienses sont des compas qui arpentent le globe terrestre en tous sens, lui donnant son équilibre et son harmonie.
- Gaussian variables are a minimal structure that arise everywhere: in Probability, in Geometry, in Functional Analysis, in Statistical Physics.
- Gaussian inequalities serve as an idealised model, from which other models can be studied by "perturbation".
- Quantifying deviations from or similarities to the Gaussian case allows to classify other models / space.

Crash course on Gaussian analysis

• The standard Gaussian measure on ${\mathbb R}$ is the probability measure

$$\gamma(\mathrm{d}x) \coloneqq \exp\left(-\frac{x^2}{2}\right)(2\pi)^{-1/2}.$$

- The Gaussian space is $(\Omega, \mathfrak{W}, \mathbf{P}) \coloneqq (\mathbb{R}^{\mathbb{N}}, \mathfrak{B}(\mathbb{R}^{\mathbb{N}}), \gamma^{\otimes \mathbb{N}}).$
- We consider the coordinates

$$g_i(\omega) \coloneqq \omega_i, \qquad \omega = (\omega_i) \in \Omega.$$

• (g_i) is a sequence of independent standard Gaussian variables.

Why are Gaussians important

- $\hat{\gamma}(t) \coloneqq \int \mathrm{e}^{\mathrm{i}tx} \gamma(\mathrm{d}x) = \mathrm{e}^{-t^2/2} \simeq \gamma(t).$
- Central limit theorem, statistical tests.
- Free case (no interaction) of infinite-dimensional models (statistical mechanics, SPDEs).
- Gaussian variables represent *all* the metric spaces embedded in the Hilbert space.

Theorem

 $\ell^2(\mathbb{N})$ embeds bi-Lipschitz in $L^q(0,1)$, $1 \le q < \infty$.

Solving a question of Banach with Gaussians

Theorem $\ell^2(\mathbb{N})$ embeds bi-Lipschitz in $L^q(0,1)$, $1 \le q < \infty$.

Proof.

- $X: \ell^2(\mathbb{N}) \ni t \mapsto X_t \coloneqq \sum_i t_i g_i$.
- Converging in $L^2(\mathbf{P})$, and $\mathbf{Law}[X_t] = \mathbf{Law}[||t||_{\ell 2}g_1]$.
- Thus, $||X_t||_{L^q} = ||t||_{\ell^2} \Gamma(\frac{q+1}{2})^{1/q} \pi^{-q/2} 2^{-1/2}.$

- For $T \subset \ell^2(\mathbb{N})$, the Gaussian process over T is $(X_t \coloneqq \sum_i t_i g_i : t \in T).$
- $d(t,s) := ||s-t||_{\ell^2(\mathbb{N})} = \mathbf{E}[(X_t X_s)^2]^{1/2}$.
- In general, one is interested in process indexed not by ℓ²(N) but rather by:
 - the time ℝ₊ → Brownian motion,
 - the complex plane $\mathbb{C} \rightsquigarrow \text{Bargman}-\text{Fock}$,
 - or even a function space \rightsquigarrow the Gaussian free field.

It is known all Gaussian processes arise from the Hilbert space representation.

• Important to forget any Euclidean or metric structure on the initial index set and work in the Hilbert setting. Otherwise, the ideas are *polluted* by the extra structure that one would want to use inevitably.

Supremum of Gaussian processes

Supremum of Gaussian processes

- What is the order of $S(T) := \mathbf{E} \sup_{t \in T} X_t X_{t_0}$?
- $S(T) = \int_0^\infty \mathbf{P}[\sup_{t \in T} (X_t X_{t_0}) \ge u] \mathrm{d}u.$
- $\mathbf{P}\left[\sup_{t\in T}(X_t X_{t_0}) \ge u\right] \le \sum_{t\in T} \mathbf{P}\left[(X_t X_{t_0}) \ge u\right].$

Key Fact

$$\mathbf{P}[|X_t - X_s| \ge u] \le 2 \exp\left(-\frac{u^2}{2d(s,t)^2}\right),$$

with $d(s,t) = \mathbf{E}[(X_t - X_s)^2]^{1/2} = ||t - s||_{\ell^2(\mathbb{N})}$.

• Before Talagrand, results by Kolmogorov, Dudley, Sudakov, Fernique and more based on the distance *d* and the chaining.

Chaining 101

- T finite.
- Consider an increasing sequence (T_n) of approximating sets.
- For all n, choose $\pi_n(t) \in T$.
- For *n* large enough $T_n = T$ thus $\pi_n(t) = t$.
- Trivially $X_t X_{t_0} = \sum_n (X_{\pi_n(t)} X_{\pi_{n-1}(t)}).$
- Different choices of (T_n) and (π_n) together with the key fact

$$\mathbf{P}[|X_t - X_s| \ge u] \le 2 \exp\left(-\frac{u^2}{2d(s,t)^2}\right),$$

yield different bound.

Theorem (Dudley) Choose (T_n) with cardinality as small as possible such that $\forall t \in T, \exists s \in T_n, d(t, u) \leq 2^{-n}$, then

$$S(T) \coloneqq \mathbf{E} \sup_{t \in T} X_t \le C \sum_n 2^{-n} \sqrt{\log |T_n|}.$$

Theorem (Fernique) If $|T_n| \le 2^{2^n}$, then $S(T) \le C \sup_{t \in T} \sum_n 2^{n/2} d(t, T_n)$. Equivalently, with

$$\begin{split} \gamma_p(T,d) &\coloneqq \inf_{(T_n)} \sup_{t \in T} \sum_n 2^{n/p} d(t,T_n), \\ S(T) &\leq C \gamma_2(T,d). \end{split}$$

Talagrand's main contribution

Theorem (Talagrand) $\frac{1}{C}\gamma_2(T,d) \le S(T) \le C\gamma_2(T,d).$

- γ_2 is the correct object to capture the size of a Gaussian process.
- Despite being very naive, the chaining when done optimal completely settles the question of the size of a Gaussian process.

Consequences of Talagrand's result and approach

- Comparison theorems: if a non-Gaussian process (Y_t) satisfies $\mathbf{P}[|Y_s - Y_t| \ge u] \le 2 \exp\left(-\frac{u^2}{2d^2(s,t)}\right)$, then $\mathbf{E} \sup_{t \in T} Y_t \le C\gamma_2$.
- Stable processes: same as Gaussian but $\ell^2 \leftrightarrow \ell^p \ (1 ,$ $then similar results but <math>\gamma_2 \leftrightarrow \gamma_q$ with $\frac{1}{p} + \frac{1}{q} = 1$.
- Deterministic orthogonal series and random Fourier series.
- Geometry of metric spaces: $\gamma_2(T, d)$ for other spaces.
- The *Bernoulli conjecture* about all the possible ways to bound the process $\sum \varepsilon_i t_i$ (solved by Bednorz and Latała in 2014).
- See Talagrand's book Lower Bounds for Stochastic Processes.

Concentration of measure

The philosophy of the concentration of measure

- In a metric measure space (E, d, μ) trying to quantify how fast the measure of a set increases as the set is enlarged metrically.
- Similarly control of the deviation of Lipschitz functions $\mu(|f \mu(f)| \ge t)$.
- In high dimension Lipschitz functions are almost constant.
- Similarly, if $\mu(A) \ge 1/2$, then $A_t := \{x \in E : d(x, A) \le t\}$ is almost the whole space.

Examples

• On the round sphere \mathbb{S}^{n-1} , with normalised Haar measure σ_{n-1}

$$\sigma_{n-1}(|f - \sigma_{n-1}(f)| \ge t) \le \left(\frac{\pi}{8}\right)^{1/2} \exp(-(n-2)t^2/2).$$

• On \mathbb{R}^n , with the standard Gaussian measure γ_n

$$\gamma_n(|f - \gamma_n(f)| \ge t) \le \frac{1}{2} e^{-t^2/2}.$$

Some issues with concentration of measure

- Dimension dependence: (E, d, μ) might satisfy the concentration but not the product space (Eⁿ, dⁿ, μⁿ).
- Distance dependent: need a distance on *E* which is not always here when studying probability, especially discrete models.
- No necessary and sufficient criterion: can be deduced from isoperimetric inequalities and other geometric functional inequalities, such as the Poincaré / spectral gap, but in general it is much weaker.

Talagrand's main contributions

- Talagrand inequality: characterizing dimension-free Gaussian concentration of measures in terms of relative entropy and optimal transport.
- Concentration in product spaces: on a arbitrary probability space (E, μ) construct some distances on the product space and quantifies the associated concentration of measure phenomenon.

• Too technical to give details but the distance looks like

$$d_n((x_i), (y_i)) = \sum_{i=1}^n h(x_i, y_i) \mathbf{1}_{x_i \neq y_i}.$$

- Applied by Talagrand to solve major questions regarding:
 - Percolation.
 - Spin glass theory.
 - Random graphs.
- Still highly used today. Still being understood and revisited.

Talagrand inequality

- Relative entropy: **Ent** $(\nu \mid \mu) \coloneqq \int \log \frac{d\nu}{d\mu} d\nu$.
- Transportation cost: *T*₂(ν₁, ν₂) ≔ inf *f* d²(x, y)π(dxdy), where the infimum over all the couplings π of μ and ν.
- μ satisfies the Talagrand inequality provided

 $\mathcal{T}_2(\nu_1,\nu_2) \le 2\operatorname{Ent}(\nu_1 \mid \mu) + 2\operatorname{Ent}(\nu_2 \mid \mu), \qquad \forall \nu_1,\nu_2.$

Theorem (Talagrand)

- If μ satisfies the Talagrand inequality, then so does μⁿ on the product space.
- If μ satisfies the Talagrand inequality, then it satisfies Gaussian concentration of measure

$$\mu(|f - \mu(f)| \ge t) \le \frac{1}{2} e^{-t^2/2}$$

• The standard Gaussian measure satisfies the Talagrand inequality.

Legacy of Talagrand's inequality

- In my opinion, the most important inequality in analysis and probability together with the logarithmic Sobolev inequality.
- Shaped the theory of optimal transport, functional inequalities, and more up to today.
 - Ricci curvature in non-smooth continuous spaces.
 - Relationship with coercive inequalities.
 - Transport-entropy inequalities, mostly for discrete spaces.
 - Theory of boolean functions.
- What happens when one changes the transportation or the entropy.
- Non-product, that is non-independent, models.
 - Random matrix.
 - Statistical physics.
 - Point processes.

Sketch of proof for the Gaussian

- Inequality on the two-point space $\{-1, +1\}$ with $\mu = \frac{1}{2}(\delta_{-1} + \delta_1).$
- Use the stability by products to write an inequality for μ^n .
- Use an easily-established stability by Lipschitz maps to write an inequality for pushforward of μ^n by $\frac{1}{\sqrt{n}} \sum_{i=1}^n x_i$.
- Take $n \rightarrow \infty$ and use the central limit theorem.

Proof of the concentration of measure

- Take $A \subset E$ and $B = E \setminus A_t$ for t > 0.
- Take $\nu_1 = \frac{1_A}{\mu(A)}\mu$ and $\nu_2 = \frac{1_B}{\mu(B)}\mu$.
- Then $\mathcal{T}_2(\nu_1, \nu_2) \ge t^2$.
- Ent $(\nu_1 \mid \mu) = -\log \mu(A)$, Ent $(\nu_2 \mid \mu) = -\log \mu(B) = -\log(1 - \mu(A_t))$.

•
$$t^2 \le -2\log\mu(A) - 2\log(1 - \mu(A_t)).$$

Spin glasses and the Parisi formula

Statistical mechanics 101

- System of spins $\sigma = (\sigma_i)$ with $\sigma_i \in \{\pm 1\}$.
- Interacting with only pairwise interaction.
- Undergoing a thermal agitation at temperature 1/β.
- With an external force h.
- The Hamiltonian for *n* spins is

$$H_n(\sigma) \coloneqq -\frac{1}{\sqrt{n}} \sum_{i < j} J_{ij} \sigma_i \sigma_j - h \sum \sigma_i.$$

• The partition function

$$Z_{n,\beta} \coloneqq \sum_{\sigma} \exp(-\beta H_n(\sigma)),$$

• The free energy, if it exists

$$F(\beta) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log Z_{n,\beta}.$$

The Sherrington–Kirkpatrick Hamiltonian

• Here the interactions are *random*, more precisely with g_{ij} independent standard Gaussian variables

$$H_n(\sigma) = -\frac{1}{\sqrt{n}} \sum_{i < j} g_{ij} \sigma_i \sigma_j - h \sum_i \sigma_i.$$

- This can be seen as a Ising model in a disordered, that is random, environment.
- Thus the partition function is a priori random and one is interested by the average

$$\frac{1}{n} \mathbf{E} \left[\log \sum_{\sigma} \exp(-\beta H_n(\sigma)) \right].$$

 It was known that the large n limit f(β) exists, although the non average (random) limit F(β) might not exist.

The Parisi ansatz

• For reasons I don't understand, the physicist had conjectured that

$$f(\beta) = \inf_{q \ge 0} \left\{ \frac{\beta^2}{4} (1-q)^2 + \int \log \cosh(x\beta\sqrt{q}+h)\gamma(\mathrm{d}x) \right\} + \log 2.$$

- Talagrand managed to rigorously prove this formula.
- Don't really understand the proof. Some relations with the supremum of Gaussian processes: for h = 0, $\lim_{\beta \to \infty} \frac{1}{\beta} \log Z_{n,\beta} = \sup_{\sigma} H_n(\sigma).$
- Behind the mere proof brought in new ideas to study spin glasses.

Concluding thoughts

Things I did not talk about

- Lots of works in functional analysis in the 1970s
- Work on Maharam's conjecture.
 - Around 75s suggested that the conjecture was false and proposed an alternative.
 - His conjecture proved by others in the 80s.
 - Disproved himself the initial conjecture in 2008!
- The matching problem.
- Interest for the theory of computation and information.
- Probably more I am not even aware of!

What Talagrand teaches us about mathematics

- Gaussians serve as a fundamental and unifying element in mathematics.
- The boundary of mathematical fields are porous and ambiguous. Probability could show up when you least expect it!
- Maths is about hard-work, patience , perseverance, starting from simple concept, and a bit of luck.
- Next time you are stuck on a problem:
 - Look for that minimalistic structure in which your problem makes sense.
 - See if you can then formulate it, and hopefully solve it, for Gaussians.
 - Go back to your initial problem with the extra knowledge you gain from the understanding of the Gaussian case.

Thank you for your attention