On the dynamics of the \times_p and \times_q maps on the unit circle.

Sophie Grivaux Université de Lille (France)

sophie.grivaux@univ-lille.fr

Abstract

For every integer $n \geq 1$, denote by T_n the map $x \mapsto nx \mod 1$ from the circle group $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ into itself. Let $p, q \geq 2$ be two multiplicatively independent integers. I will present an overview of Furstenberg's $\times_{p} \times_{q}$ conjecture, which states that any continuous Borel probability measure on \mathbb{T} which is simultaneously T_{p} - and T_{q} -invariant must be the Lebesgue measure on \mathbb{T} . Using Baire Category arguments, I will then show that generically, a continuous T_{p} -invariant probability measure μ on \mathbb{T} is such that $(T_{q^n}\mu)_{n\geq 0}$ does not converge w^* to the Lebesgue measure on \mathbb{T} . This disproves Conjecture (C3) from a 1988 paper by R. Lyons, which is a stronger version of Furstenberg's rigidity conjecture.

The talk will be based on a joint work with Catalin Badea (Lille).