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Letter from the editor

Welcome

to our “September 15, 2010-Newsletter”

Have nice semester!

Françoise
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1 News from the BMS

2010 PhD-Day

On September 13, the Belgian Mathematical Society organized its third PhD-Day.

This meeting was a great success!

Thank you so much to each of the participants! (sponsor, PhD student and other.)!

Our next PhD-Day is going to take place in 2012.

It is also a pleasure and honor to communicate the . . .

Winners for the “best posters” :

• 1st prize, 50 EUR voucher for books at EMS Publishing house:

Hilde De Ridder (UGent): The Cauchy-Kovalevska Extension Theorem in Discrete Clifford Analysis.

• 2nd prize, book ‘Geometry Revealed’ by M. Berger, Springer Verlag:

Dennis Dreesen (KULAK): Hilbert space compression for groups equipped with proper length functions.

• ex-aequo third prizes, books ‘Wiskunde + Afrika’ from VUB Press and a beautiful wooden double helix
from Arabesk:

– Bertrand Desmons (UMons): One-dimensional wrinkling of thin membranes.

– Sarah De Wachter (VUB): Quantifying domains using approach spaces.

– Kim Vercammen (KULAK): Complete LR-structures on solvable Lie algebras.
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You will find the posters at the end of this Newsletter.

But . . . since sizes of files had to be reduced for sending email (so quality is sometimes not as good as it should
be), a special web page is dedicated to them:

http://bms.ulb.ac.be/phdday/winningposters10.php

Emails of the winners: hdr@cage.ugent.be, Dennis.Dreesen@kuleuven-kortrijk.be, Bertrand.Desmons@umons.ac.be,
sdewacht@vub.ac.be, Kim.Vercammen@kuleuven-kortrijk.be

During this whole day, participants had the opportunity to visit the stand of Arabesk, one of the sponsors.
But one can also visit the webpage, enjoy and get some of their products at any moment!

Arabesk

ARABESK sells products whereby artists and designers have been inspired by physics, mathematics and
logic; the results are surprising puzzles, games and objects, sometimes complex, sometimes simple, but always
intriguing and always beautiful in their appearances.

ARE YOU CURIOUS??? You can have a look at the online catalog of Arabesk at the address http//www.arabesk.nl

Addresses of Arabesk: Avenue Concordia 17-B, 3062 LA Rotterdam
+31 10-2140361, +31 6-51-472492, http//www.arabesk.nl, arabesk@arabesk.nl

2 Meetings, Conferences, Lectures

2.1 UMons

Les services

d’Analyse Mathématique et de Probabilités et Statistique

organisent une journée de rencontres et d’exposés dans le cadre de l’EDT Mathématique:

Analyse fonctionnelle, 16 novembre 2010, UMons

Les deux conférenciers sont:

• 10h30 Etienne Matheron (Université de Lens): Topologie, théorie ergodique et structure des ensembles

entiers.

• 14h30 Jean Saint-Raymond (Université de Paris 6). Thème: théorie descriptive des ensembles et applica-
tions à l’analyse fonctionnelle.

La réunion aura lieu au bâtiment “le Pentagone” (local 0A11), avenue du champ de Mars, Mons.
Informations and contacts: catherine.finet@umons.ac.be , kg.grosse-erdmann@umons.ac.be

3 PhD theses

Coring techniques and monoidal categories applied to Hopf algebras and their generalizations

Kris Janssen

June 7, 2010, VUB

Supervisor: Stefaan Caenepeel

Summary
In the past decades many generalizations of Hopf algebras have appeared in the literature. In this work we

are particularly interested in multiplier Hopf algebras (MHAs) and Hopf group coalgebras, especially in their
categorical behavior.

In the second chapter we develop a theory of group corings, notably a Galois (descent) theory for such
objects. As an application of the latter we obtain a Structure Theorem for relative Hopf group modules over



BMS-NCM NEWS #79, September 15, 2010 4

a faithfully flat Galois extension. We also discuss the relation between group corings and the dual notion of
group-graded ring, and introduce and study strong group corings, dualizing strongly group-graded rings.

In the third chapter we present two approaches to better understand MHAs from a categorical point of view.
The first one makes use of the notion of a multiplier bialgebra, so that a MHA is a multiplier bialgebra along
with some kind of antipode, as it is the case classically. The other one consists in the development of a general
theory of so-called Kleisli-Hopf algebras. Examples of these are provided by a broad class of MHAs, as well as
by Hopf group coalgebras.

In the final chapter we generalize usual (co)actions of a Hopf algebra on an algebra to partial (co)actions,
making use of coring techniques. Several examples are given, of which partial group actions are the most basic
and motivational.

The first chapter captures some (well-known) generalities on monoidal categories, Hopf algebras and corings.

Surfaces in three-dimensional Euclidean and Minkowski space, in particular a study of Weingarten surfaces

Wendy Goemans

3 September 2010, KUL

Promotor and co-promotor: F. Dillen Copromotor: I. Van de Woestyne

Summary
In this thesis situated in the area of differential geometry, surfaces and hypersurfaces are studied that can be

generated from curves. More precisely, so-called translation surfaces, tensor product surfaces, and translation
hypersurfaces are the main subjects under investigation.

Firstly, a translation surface arises when a curve is translated over another curve. The ambient space of the
translation surfaces under consideration is either the Euclidean or the Minkowski 3-space. For these surfaces,
several curvature conditions concerning the Gaussian curvature, the mean curvature, the second Gaussian
curvature and the second mean curvature are examined. This has led to theorems characterizing constant
curvature translation surfaces and full classification theorems of translation surfaces exhibiting a functional
relation between the Gaussian curvature and the mean curvature. These surfaces are called Weingarten surfaces.

Secondly, by taking the tensor product of two curves, a tensor product surface is obtained. Here, we consider
semi-Euclidean spaces of arbitrary dimension and index as ambient spaces for the two curves. A full classification
of minimal tensor product surfaces has been realized.

Thirdly, translation surfaces can be generalized naturally to translation hypersurfaces. However, while
the translation surfaces and tensor product surfaces treated previously are assumed to be non-degenerate,
the translation hypersurfaces under consideration are lightlike. It is shown that every lightlike translation
hypersurface must be part of a hyperplane.

The electronic version of this dissertation is publicly available and can be reached by browsing the catalogue of the
university library at http://bib.kuleuven.be/index.php

4 Miscellaneous

4.1 Fields Medal and other Prizes

International Mathematical Union (IMU) announced the 2010 Fields Medal winners at the opening of the International
Congress of Mathematicians (ICM 2010) in Hyderabad, India.

2010 Fields Medal Winners

• Elon Lindenstrauss

ICM says that Elon Lindenstrauss from Princeton University is being awarded the 2010 Fields Medal “for his
results on measure rigidity in ergodic theory, and their applications to number theory”.

• Ngô Bao Châu

receives the 2010 Fields Medal “for his proof of the Fundamental Lemma in the theory of automorphic forms
through the introduction of new algebro-geometric methods”. He is currently a Professor in the Faculté des
Sciences at Orsay and Member of the Institute for Advanced Study in Princeton. In September 2010, he will be
starting at the University of Chicago.
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• Stanislav Smirnov

receives the 2010 Fields medal for the “proof of conformal invariance of percolation and the planar Ising model in
statistical physics”. He is a professor at University of Geneva, Switzerland.

• Cédric Villani

from Institut Henri Poincaré (IHP) in Paris receives the 2010 Fields Medal “for his proofs of nonlinear Landau
damping and convergence to equilibrium for the Boltzmann equation”.

In addition to the Fields Medals, the winners of three other top Math awards, Nevanlinna Prize, Gauss Prize, and a
new Chern Prize, were also announced at ICM 2010.

Nevanlinna Prize

The Nevanlinna Prize is being awarded since 1982 to young scientists who have done outstanding research in
theoretical computer science. This prize is established to honor the Finnish mathematician Rolf Nevanlinna.
Nevanlinna Prize is is awarded once every 4 years at the ICM meeting.

Daniel Spielman,

from Yale University, is the the winner of Nevanlinna Prize 2010 for his contributions to“Linear Programming,
algorithms for graph-based codes and applications of graph theory to Numerical Computing”.

Gauss Prize

Gauss Prize is being awarded since 2006 to the top mathematicians in the field of applied mathematics, giving
importance to the mathematical results that have spawned new areas of practical applications.

Yves Meyer,

Professor Emeritus at École Normale Supérieure de Cachan, France, is the winner of Gauss Prize 2010 for his
fundamental contributions to number theory, operator theory and harmonic analysis, and his pivotal role in the
development of wavelets theory, so used nowadays in signal analysis and statistics.

Chern Prize

IMU announced a new award called Cher Prize this year for recognizing lifetime achievement of mathematicians.
Chern prize is established to honor the late Chinese mathematician Shiing-Shen Chern.

Louis Nirenberg,

from Courant Institute of Mathematical Sciences, New York University (NYU), is the first winner of the Chen
Medal 2010 for his role in the formulation of the modern theory of non-liner elliptic partial differential equations
and for mentoring numerous students and post-docs in this area.

4.2 From FUNDP

Faculty position at the University of Namur

The University of Namur (FUNDP) has vacancy for a full-time tenured-track faculty position (m/f) at the Department
of Mathematics (Applied Mathematics - Complex Systems).

Preference should be given to a candidate with expertise in STATISTICS and/or in SYSTEMS and CONTROL.
The application DEADLINE is September 13, 2010. The position starts in January 1, 2011.
For a more complete description, see below and the web site http://www.fundp.ac.be/universite/jobs/emploi.2010-

06-29.7824267395

5 History, maths and art, fiction, jokes, quotations. . .



What’s happening in the mathematical sciences, vol. 7 Dana Mackenzie, American Mathematical

Society, 2009 (127 p.), soft cover, ISBN 978-0-8218-4478-6, US$15.95.

Covers of volumes 1-7 of What’s happening in the mathematical sciences

What you see above are the covers of the first seven volumes of the AMS series What’s happening in the
mathematical sciences. I have here in front of me the latest volume 7 from 2009. The first five volumes

appeared respectively in 1993, 1994, 1996, 1999, and 2002. They were all authored by Barry Cipra. Volume

six is from 2006 and Dana Mackenzie entered the picture because Barry Cipra could not finish that one.

Barry Cipra

With the latest volume the responsibility has completely been transferred to Dana

Mackenzie.

The purpose of the series is to give on a regularly basis short introductions

for a broad mathematical audience to recent evolutions in mathematics. There are

around 10 topics per issue, each one taking about 10 pages, which are usually richly

illustrated. Excerpts from some of the volumes can be found as google books on

the web.

To come to volume seven, there are 9 contributions. They are all showcases that

appeal to any reader with a general mathematical interest. There is not to much

mathematics, in the sense that formulas are almost completely absent. But on the

other hand it takes a minimal mathematical skill to understand what is actually

going on. Indeed, a formula pops up once in a while, and then of course one should be able to understand

series, matrices, summations, products, equations, coordinate systems, groups, etc. Nothing fancy, yet

not for a mathematical illiterate either. Although not explicit, the chapters are written like one would

write an interview with the mathematical experts for the problem being discussed. It is clear the Dana

Mackenzie has talked to the researchers and the text is a sedimentation of these interviews, not a summary

of published papers.

Dana Mackenzie

It is not a coincidence that new results emerge where previously

unrelated areas meet. That is for example the case in the first con-

tribution: A new twist in knot theory. The triggering result is that

it was proved in 2006s by E. Ghys that a modular knot is topologi-

cally identical to a Lorenz knot. The first one living in number the-

ory and the second one in dynamical systems. The article sketches

the history and possible consequences of the result, even linking it

with the Riemann Hypothesis (discussed in volumes 4 and 5 of this

series). It is worthwhile to have a look at the beautifully illustrated

online text by E. Ghys Lorenz and modular flows: a visual introduction
at http://www.ams.org/featurecolumn/archive/lorenz.html, one of the

AMS featured columns. These columns have a purpose very close to

the purpose of the series under review.

The second article Error-term roulette and the Sato-Tate conjecture is again about number theory

(clearly deterministic) but now interfering with probability theory (obviously stochastic). For example

the Prime Number Theorem (1898) which roughly says that the probability of a number being prime is

inversely proportional to the number of digits in the number. But such statements only hold ‘on the

average’. This links up again with the Riemann Hypothesis. The Sato-Tate conjecture is also about

counting: how much deviates the number of points on an elliptic curve from the mean value, and what

is the distribution of these deviations. That problem was solved in 2006. That proof is the result of an



interaction of three major machineries: L-functions, automorphic forms and Galois representation theory,

following a road-map pointed out by Jean-Pierre Serre. The article is mainly explaining this link between

the three pillars.

The fifty-one percent solution is about the surprising observation that when tossing a coin, tossed

vigorously enough and caught in midair has about a 51% chance of landing with the same face up as

started with. This article describes the analysis of two Stanford researchers, Persi Diaconis and Susan

Holmes, and Richard Montgomery from UC at Santa Cruz, analysing the dynamics of the normal vector

on the coin when tossed. Their finding were published in 2007 in Siam Review Volume 49, Issue 2, pp.

211-235, that confirmed the observation.

Aztec diamond

Given a chessboard with two diagonally opposite corner squares removed, can you

cover the remaining part with 31 dominos. The answer is no, and there is an easy proof.

This is the prototype of the problems about random tilings considered in Dominos,
anyone. If there is indeed a feasible solution, how many different ones do there exist,

and how about a hexagon tiled with lozenges (see cover page of this volume) or rhombi;

or tiling an Aztec diamond? Investigating the random tilings of Aztec diamonds of

fixed size with dominos of decreasing size gives connections with statistical physics

describing crystalline of liquid phases.

Not seeing is believing brings us at the verge of Harry Potter’s invisibility cloak or Star Trek cloaking

devises. In fact a first prototype of such a cloak was built in 2006 at Duke university. In fact invisibility

for certain wavelengths in tomography, this is a serious problem. This is a contribution where physics

dominates with e.g. Maxwell equations and magnetic fields, yet there is some interesting mathematics

underneath.

The minimal model program by S. Mori (Fields Medal 1990) is an active research topic in algebraic

geometry. It looks for the “simplest” birational model, i.e., a version of any complex variety that still has

the same function space defined on it. Getting with the (Mori) program illustrates the historical background

from the “Italian School” to the progress made in extending results from dimension 2 to higher dimensions.

In The cook that time couldn’t erase the remarkable story is told about a palimpsest, i.e., a parchment

book of which the pages had been scraped, turned over 90 degrees and written over. The original text was

an account of writings by Archimedes, which had been transformed into a prayer book by monks in 1229.

When it was sold during an auction in 1998, it was in a terrible state. However science as carefully recovered

the original text (pet name “Archie”) which is now publically available at www.archimedespalimpsest.org
with the explanation of the recovery project and the tools used. This is an “Indiana Jones story” from

real life.

The story in Charting a 248-dimensional world is about the Lie group E8, with its 248 parameters,

it is the largest of the exceptional groups in Killing’s classification. Writing it as a combination of its

irreducible representations requires a matrix that uses 60 gigabytes of data, 60 times the amount of data

in the human gnome. Thanks to ingenious programming, the character map of E8 was completed in 2007.

The last contribution is again applied. The title Compressed sensing makes every pixel count says

indeed what the main idea is behind the buzz-word “compressed sensing”. Almost everyone is making

digital pictures now and it is also familiar that these big matrices of pixels (the number of mega pixels is

considered to be a measure of quality of the camera) are then compressed to e.g., a jpeg format so that

it tikes much less space to store. The purpose of compressed sensing is to reduce the number of pixels

that are sensed, and then mathematically recover a good image from even an undersampled observation

that does cover the information content of the image. For example, with only few characteristics, it is

possible to reconstruct a human face. The “single-pixel camera” captures only few randomly chosen pixels

to reconstruct the image. Hence mathematicians and engineers start to think beyond Shannon’s sampling

theorem.

Books, articles and websites like this one are multiplying fast and it is a fortunate sign that mathe-

maticians take the trouble of explaining their work to a more general public, hopefully attracting young

enthusiastic students and, why not, convince people of the importance of funding their work.

Adhemar Bultheel



The Cauchy-Kovalevsky Extension Theorem
in discrete Clifford Analysis

Hilde De Ridder∗, supervisors Hennie De Schepper, Frank Sommen
Clifford Research Group

Department of Mathematical Analysis, Faculty of Engineering, Ghent University

Discrete framework

Equidistant lattice with variable mesh width h > 0:
Zm

h = {(�1h, �2h, . . . , �mh) : (�1, �2, . . . , �m) ∈ Zm}
Forward/backward basis vectors e±j (j = 1, . . . ,m)

e−j e−� + e−� e−j = 0
e+

j e+
� + e+

� e+
j = 0

e+
j e−� + e−� e+

j = δj�

Forward/backward difference operators

∆+
j [u] =

u(· + hej)− u(·)
h

, ∆−
j [u] =

u(·)− u(·− hej)

h

Discrete Dirac operator

D =
m�

j=1

�
e+

j ∆+
j + e−j ∆−

j

�
=

m�

j=1

∂j, D2 = ∆∗

Discrete monogenic function f : Df = 0

Discrete vectorvariable

X =
m�

j=1

�
e+

j X−
j + e−j X+

j

�
=

m�

j=1

ξj

Skew Weyl relations:�
∆+

j X+
j −X−

j ∆−
j = 1

∆−
j X−

j −X+
j ∆+

j = 1
⇒

�
∂j ξj − ξj ∂j = 1

∂k ξj + ξj ∂k = 0 (k �= j)

Discrete Euler operator: DX + XD = 2E + m

Discrete homogeneous polynomials Pk: EPk = kPk

ξj[1](xj) = xj (e+
j + e−j )

ξ2n
j [1](xj) =

�
x2

j + nhxj(e
+
j e−j − e−j e+

j )
� n−1�

i=1

(x2
j − h2i2)

ξ2n+1
j [1](xj) = xj (e+

j + e−j )
n�

i=1

(x2
j − h2i2)

Involution ˆ : ξ̂1 = −ξ1, ξ̂j = ξj (j = 2, . . . ,m), �ab = âb̂

Example 1: CK [δ0(x2)] in two dimensions (m = 2)
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Figure: Scalar part of CK [δ0(x2)] and log10 plot of the absolute values; h = 1

The discrete delta function

δ0 (x2, . . . , xm) =

�
1, (x2, . . . , xm) = (0, . . . , 0) ∈ Zm−1

h

0, (x2, . . . , xm) �= (0, . . . , 0) ∈ Zm−1
h

� basic building block
� continuous delta function: not real-analytic ⇒ no CK extension

For (x1, x2) ∈ Z2
h, the scalar part of CK [δ0(x2)] (x1, x2) is






1 +

|x1/h|�

k=1

1

h2k(k!)2
x2

1

k−1�

m=1

�
x2

1 −m2h2
�
, x2 = 0

(−1)|x2/h|
|x1/h|�

k=|x2/h|

1

h2k+1(k − x2
h )! (k + x2

h )!
x2

1

k−1�

m=1

�
x2

1 −m2h2
�
, x2 �= 0

For h → 0 the values of CK[δ0] diverge

∗The author acknowledges support by the institutional grant no. B/10675/02 of Ghent University (BOF).

Discrete CK extension

Discrete CK extension Theorem

f (x2, . . . , xm): discrete function, defined on Zm−1
h and taking values in the

algebra over
�
e+

2 , e−2 , . . . , e+
m, e−m

�

Cauchy-Kovalevsky extension of f :
∃! discrete monogenic function F (x1, x2, . . . , xm), defined on Zm

h and
taking values in the algebra over

�
e+

1 , e−1 , . . . , e+
m, e−m

�
, s.t. F |x1=0 = f .

Denote D� =
�m

j=2 ∂j, then

CK [f ] (x1, x2, . . . , xm) =
∞�

k=0

ξk
1 [1](x1)

k!
fk(x2, . . . , xm) (∗)

with f0 = f, fk+1 = (−1)k+1D�fk

No conditions on the function f :

ξ2k+1
1 [1](x1) = 0 for k � |x1|

h

ξ2k
1 [1](x1) = 0 for k � |x1|

h
+ 1

⇒ ∀ (x1, . . . , xm) ∈ Zm
h , the series (∗) reduces to a finite sum

Fueter polynomials

Discrete Fueter polynomials of degree k constitute a basis for M(m)
k :

CK [ξα2
2 . . . ξαm

m ] with |α| = k

zi = CK[ξi] = ξi − ξ1 (i = 2, . . . ,m) and

V�1,...,�k =
1

k!

�

π(�1,...,�k)

sgn(π) zπ(�1) . . . zπ(�k) (2 � �j � m)

� sum over all distinguishable permutations π of (�1, . . . , �k)
� every second zj in each term is replaced by ẑj, j = 2, . . . ,m

For α = (α2, . . . ,αm) ∈ Nm−1: α = (�1, �2, . . . , �k) ∈ {2, . . . ,m}k s.t.
k = |α|, �i � �j for i < j and #j in (�1, �2, . . . , �k) is αj. Then

CK [ξα2
2 . . . ξαm

m ] = α2! . . . αm! V�1,...,�k

Example 2: CK [exp(x2)] in two dimensions (m = 2)

Figure: Continuous and discrete scalar part CK [exp(x2)] (x1, x2) for h = 1, h = 1
10

The discrete exponential function exp (x2)
� restriction of exp (x2) to Zh

� continuous exp(x2) is real-analytic:

CK [exp (x2)] (x1, x2) = exp
�
−x1e1∂

�
x

�
[exp (x2)]

For (x1, x2) ∈ Z2
h, the scalar part of CK [exp (x2)] (x1, x2) is

exp (x2)



1 +

|x1
h |�

k=1

(−1)k
λk,h

(2k)!h2k
x2

1

k−1�

m=1

�
x2

1 −m2h2
�




with λk,h =
k�

m=−k

(−1)m
�

2k

k −m

�
exp (mh)

For h → 0, the discrete CK extension tends to the continuous CK extension

hdr@cage.ugent.be Third PhD-Day S22 Galglaan 2, B-9000 Ghent, Belgium



Hilbert space compression of groups

Dennis Dreesen

K.U.Leuven Campus Kortrijk / Université de Neuchâtel

Etienne Sabbelaan 53

dennis.dreesen@kuleuven-kortrijk.be

Advisors:

Paul Igodt, K.U.Leuven Campus Kortrijk

Alain Valette, Université de Neuchâtel

Background (1)

The class of finitely generated groups that are uniformly em-

beddable into a Hilbert space was introduced by Gromov [2].

This class is very interesting: it has very nice permanence

properties, e.g. direct sums, direct limits, amalgamated free

products... and it is very large: in fact, one has to be very

creative to find a countable group which is not uniformly

embeddable! It is quite shocking that a property which is so

easily satisfied has so many strong consequences. In [5] and

[4] it is proven that uniformly embeddable groups satisfy

both the Novikov and the coarse Baum-Connes Conjecture.

In the domain of isometric actions of groups on Hilbert

spaces, one comes across groups that satisfy the property of

Haagerup. This large class of groups contains all amenable

groups. The class and its permanence properties have been

very well studied [1].

Background (2)

Quantifying how uniformly embeddable a group really is,

proves to be very fascinating and opens a new domain of

research: that of Hilbert space compression.

Analogously, quantifying how Haagerup a group really is,

leads to the notion of equivariant Hilbert space compression.

In all that follows, we only deal with finitely generated

groups that are equipped with the word length metric rel-

ative to a finite symmetric generating subset S. All of the

following definitions will be independent of the choice of

the generating subset.

Uniform Embeddability

(Classical definition)

Definition 1.1. A finitely generated group G is uniformly

embeddable in a Hilbert space, if there exist a Hilbert space

H, a map f : G → H and non-decreasing functions

ρ−, ρ+ : R+ → R+
with limt→∞ ρ−(t) = +∞ such that

∀x, y ∈ G :

ρ−(d(x, y)) ≤ d(f (x), f (y)) ≤ ρ+(d(x, y)).

The map f is called a uniform embedding of G in H.

The above definition can easily be generalized to the case

of an arbitrary metric space.

Hilbert space compression

Definition 1.2. [3] Let f : G → H be a uniform embed-

ding of a finitely generated group. The compression R(f )
of f is the supremum of α ∈ [0, 1] such that there exist

C > 0, D ≥ 0 satisfying that ∀x, y ∈ G :

(1/C)d(x, y)α −D ≤ d(f (x), f (y)) ≤ Cd(x, y) +D.

Definition 1.3. The Hilbert space compression of G is the

sup{R(f ) | f is a uniform embedding of G into a Hilbert

space }.

Quantification idea 1: The higher the compression, the

more uniformly embeddable G is.

Uniform Embeddability

(Practical definition)

We investigate the behaviour of the Hilbert space compres-

sion when taking free products, direct limits, extensions, . . .

The proofs heavily rely on the following equivalent defini-

tion for uniform embeddability.

Definition 1.4. A finitely generated group G is uniformly

embeddable in a Hilbert space, if and only if for every

n ∈ N0 there exist Sn > 0 and a Hilbert space valued

map ξn : G → H, x → ξx
n

such that � ξx
n
�= 1 for all x ∈ G

and such that

1. � ξx
n
− ξx

�

n
�≤ 1

n
provided d(x, x�) ≤

√
n,

2. � ξx
n
− ξx

�

n
�≥ 1 provided d(x, x�) ≥ Sn.

Quantification idea 2: The slower n �→ Sn increases, the

more uniformly embeddable G is.

Free products and

HNN -extensions

Theorem 1.5. Denote the Hilbert space compressions of

finitely generated groups G1 and G2 by α1 and α2 respec-

tively. Let F be a common finite subgroup. The Hilbert

space compression α of the amalgamated free product

G = G1 ∗F G2 satisfies

min(α1,α2, 1/2) ≤ α ≤ min(α1,α2).

Theorem 1.6. Consider G := HNN(H,F, θ) where both F

and θ(F ) are finite index subgroups of the finitely generated

group H . Equip H with the induced metric din from G. De-

noting the Hilbert space compressions of (H, din) and G by

α1 and α respectively, we get

α1/3 ≤ α ≤ α1.

Group extensions

Theorem 1.7. Assume that Γ is a finitely generated group

that fits in a short exact sequence

1 → H → Γ
π→ G → 1.

If G has polynomial growth and if H with the induced met-

ric from Γ has compression α, then the compression of Γ is

at least α/4.

Theorem 1.8. Assume that Γ is a finitely generated group

that fits in a short exact sequence

1 → H → Γ
π→ G → 1.

If G is a hyperbolic group in the sense of Gromov and if H ,

with the induced metric from Γ, has Hilbert space compres-

sion α, then the Hilbert space compression of Γ is at least

α/5.

Equivariant Hilbert space

compression

Definition 1.9. The equivariant Hilbert space compression

of G is the sup{R(f ) | f is a uniform embedding of G into

some Hilbert space H such that f is G-equivariant relative

to the left multiplication action of G on itself and some affine

isometric action of G on H}.

We investigate the behaviour of the equivariant compression

when taking free products and HNN-extensions. The idea of

the proof is based on the concept of conditionally negative

definite functions on groups.

Free products

(Equivariant case)

Theorem 1.10. Let G1 and G2 be finitely generated groups

with equivariant Hilbert space compressions equal to α1

and α2 respectively. Denote G = G1 ∗F G2 an amalgamated

free product where F is a finite subgroup of both G1 and G2.

If α denotes the equivariant Hilbert space compression of

G, then

1. α = 1 if F is of index 2 in both G1 and G2,

2. α = α1 if F = G2 and α = α2 if F = G1,

3. α = min(α1,α2, 1/2) otherwise.

HNN-extensions

(Equivariant case)

Theorem 1.11. Let H be a finitely generated group with

equivariant Hilbert space compression α1. Assume that

F is a subgroup of H and that θ : F → H is a group

monomorphism such that the group generated by θ(F ) ∪ F

is finite. Denoting the equivariant Hilbert space compres-

sion of HNN(H,F, θ) by α, we get

1. α = 1 whenever F = H ,

2. α = min(α1, 1/2) otherwise.
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One-dimensional wrinkling of thin membranes

Bertrand Desmons Aspirant FNRS
Institute of Mathematics, University of Mons (Belgium)

Physical experiments [3]

A film, initially flat, is laid on

a substrate such as water and

compressed horizontally at both

edges. It first starts to wrin-

kle, taking a sinusoidal form, but,

for larger compressions, seems to

concentrate at the centre.

0 L− δ

(x(s), y(s)) u(s)
We assume that there is no variation other than those in the com-

pression direction ⇒ one-dimensional parametrization.

Minimization of the energy due to :

folds (which is measured by its curvature);

potential energy due to the displacement of the substrate under-

neath.

⇒ We are seeking for minima of the functional

E : X → R : u �→ 1

2

� L

0

|u�|2 ds + 1

2
K

� L

0

�
yu(s))2

cos u(s) ds (1)

where yu(s) =
� s

0
sin u(t) dt, K is a constant relative to the substrate and X describes the space of admissible

functions:

X =
�

u ∈ H1

0
(]0, L[; R)

���
� L

0

cos u(s) ds = L− δ and

� L

0

sin u(s) ds = 0

�
. (2)

Steps leading to the limit problem δ → 0:

1. Boundedness of {E(uδ)}δ for any (uδ)δ>0, minimizers.

2. Inequality �uδ�2

X ≤ 2E(uδ) + KL3
max{1, �uδ�2

∞}, im-

plies uδ � u0 but, as
� L

0
1− cos uδ = δ, u0 = 0.

3. The sequence (uδ/
√

δ) is also bounded in H1

0
; so

uδ/
√

δ � u∗ with �u∗�L2 =
√

2.

4. Let us call αδ and βδ the two Lagrange multipliers ap-

pearing in the Euler-Lagrange equation (see (3)). By a

good choice of “test functions” v, we can deduce esti-

mates on these constants, permitting us to divide this

equation by

√
δ, giving the limit case (4).

Going to the limit δ → 0. . .

Euler-Lagrange equation of the problem:

∂E(uδ) · v +αδ

� L

0

sin uδ · v + βδ

� L

0

cos uδ · v = 0 (3)

As δ → 0, we obtain:

� L

0

u∗�v� + K
� L

0

� ·

0

u∗
� ·

0

v +α

� L

0

u∗v + β

� L

0

v = 0 (4)

where α = lim
δ→0

αδ and β = lim
δ→0

βδ/
√

δ (up to subsequences).

This gives then the eigenvalue problem






wiv−αw�� + Kw = 0

w(0) = w(L) = 0

w�(0) = w�(L) = 0

(5)

(where w� = u∗) with the additional

constraint

� L

0

w�2 = 2. (6)

The equation (5) admits nontrivial solutions only if α <

−2

√
K; the characteristic polynomial admits then two pairs

of purely imaginary complex roots. For convenience rea-

sons, let us denote their moduli by
π
Lµ and

π
Lν with, w.l.o.g.

µ > ν.

µ

ν
n
◦
1

n
◦
2

n
◦
3

n
◦
4

n
◦
5

n
◦
6

n
◦
7

n
◦
8

2 3 4 5 6 7 8 9 10

µ sin
�

π
2
µ

�
cos

�
π
2
ν
�
− ν sin

�
π
2
ν
�

cos
�

π
2
µ

�
= 0

µ cos
�

π
2
µ

�
sin

�
π
2
ν
�
− ν cos

�
π
2
ν
�

sin
�

π
2
µ

�
= 0

By successively imposing the

boundary conditions on a gen-

eral solution w, we get the two

equations in µ and ν for which

a part of the solutions is drawn.

1D or 2D space of solutions for
equation (5)?

2D space ⇔ (µ, ν) in intersec-

tion ⇔ (µ, ν) ∈ N × N with

µ + ν even.

1D space ⇔ (µ, ν) in (only)

one curve.

What about eigenvalues? We get −α = π2

L2
(µ2 + ν2). Thus, for fixed K, the

lowest eigenvalue −α is found for (µ, ν) lying on the curve closest to the

diagonal (depending on K, it is curve n
◦
1 or n

◦
2).

Possible degeneracy of eigenvalues: e.g. for the first one, for all k ∈ N,

K = π4

L4
k2(k + 2)2

will give a 2D first eigenspace.

Some properties on the “limit solutions”

Form of the solutions: We have w(s) = ŵ
� s

L −
1

2

�
with, in case 1D space,

ŵ(t) = A
�

cos(π
2
µ) cos(πνt)− cos(π

2
ν) cos(πµt)

�

ŵ(t) = A
�

sin
�

π
2
µ

�
sin(πνt)− sin

�
π
2
ν
�

sin(πµt)
�

where A is determined (up to sign) by (6).

In case of 2D space, ŵ can be any linear combination of two functions like

above, with adjusted coefficients; fixing constraint (6) selects an ellipse in

the space of solutions.

Symmetry: if w(s) is a solution of (5) then w(L − s) is also solution; it is

±w(s) in case 1D-space and can be described from w(s) in case 2D-space.

Parity of all solutions in case 1D-space: oddness on red curves, evenness

on blue ones.

Number of roots depending on µ and ν: in case 1D-space,

– At least n− 1 inner roots when being on the nth
curve.

– Increases by 2 after a crossing for the curve going below. It seems that

each newly created root comes from an edge.

– All roots are simple.

This behaviour is found (at least numerically) also for solutions living in

the 2D spaces.

Numerical experiments: continuation algorithm applied to the “limit solutions”

Plot of the energies for the first two solutions for K = k2π4

l4
with, respectively k = 0.01,

2, 3. Below are the curves u obtained by continuation, followed by the resulting curves

(x, y). (Length L is fixed to 10 and δ varies from 0.05 to 3.5 by step 0.05.)
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Future work

Evolution of the “degeneracy points” (2D space) when δ grows.

Study of the equation as K → 0 (related to the Euler-Bernoulli elastica prob-

lem). Continuation algorithm applied to elastica curves.

Study of the equation for large values of K.

Variable coefficients in equation (5).
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