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Letter from the editor

Welcome to this November issue of our Newsletter!

Have a nice winter time!!

The next issue is scheduled on “January 15, 2014” . . . so . . . , early that’s true,
I already wish you a very

HAPPY NEW YEAR! Best wishes!

Regards,
Françoise
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1 News from the BMS & NCM

1.1 Bulletin of the BMS - electronic version

We remind you that it is possible to convert your paper subscription to the Bulletin of the BMS into the

electronic version of the Bulletin. If you are interested, please contact Philippe Cara by e-mail
(pcara@vub.ac.be with bms@ulb.ac.be in cc) for details.

You will receive a special “subscriber code” with which you can register for the Bulletin of the Belgian
Mathematical Society at Project Euclid (http://projecteuclid.org).

2 Meetings, Conferences, Lectures

2.1 November 2013

Théorie des modèles des corps
Mons, Lundi 18 novembre 2013
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Le lundi 18 novembre 2013 à l’UMONS aura lieu une journée sur le thème “THEORIE DES MODELES
DES CORPS”, dans le cadre de l’Ecole Doctorale Thématique Mathématique.

Informations pratiques:
• Lieu : UMONS, Campus de la plaine; Bâtiment Le Pentagone, salle 3E20
• L’accueil débutera à 9h45
• Pour l’inscription à la journée et au lunch, veuillez contacter l’un des organisateurs : quentin brouette@umons.ac.be,
francoise.point@umons.ac.be, christian.michaux@umons.ac.be

Les conférenciers prévus sont :
• Salma Kulhmann (Université de Konstanz, Allemagne),
• Mickael Matuzinski (Université de Bordeaux, France),
• Nathanael Mariaule (Seconda Universita di Napoli, Italie),
• Samaria Montenegro (Université Paris 7, France),
• Franziska Jahnke (Université de Münster, Allemagne).

3 PhD theses

Existence and non-existence of hypercyclic subspaces

Quentin Menet, Université de Mons

Date: 16:00, November 15, 2013

Local: Marie Curie, Grands Amphithéâtres, Université de Mons

Thesis Advisor: K.-G. Grosse-Erdmann (UMONS)

Jury: G. Godefroy (IMJ, France) (President), T. Brihaye (UMONS) (Secretary), C. Finet (UMONS), S. Grivaux
(Lille 1, France), E. Matheron (Université d’Artois, France) and A. Peris (UPV, Spain)

Summary
Linear dynamics studies the properties of orbits of operators on Banach or Fréchet spaces. A key notion

of linear dynamics is the notion of hypercyclic operators. An operator T on a Fréchet space X is said to be
hypercyclic if there is a vector x in X (also called hypercyclic) whose the orbit under T is dense. In this thesis,
we focus on the notion of hypercyclic subspaces. We say that an operator T possesses a hypercyclic subspace
if there exists an infinite-dimensional closed subspace in which every non-zero vector is hypercyclic. In 2000,
a characterization of operators with hypercyclic subspaces was obtained by González, León and Montes in the
case of complex Banach spaces by using spectral theory. However, so far no characterization of operators with
hypercyclic subspaces on Fréchet spaces is known. The investigation of the existence and the non-existence of
hypercyclic subspaces for operators on Fréchet spaces is the main goal of this thesis.

In a first time, we characterize weighted shifts with hypercyclic subspaces in certain Fréchet sequence spaces
such as the space of entire functions. This result generalizes the existence of hypercyclic subspaces obtained
by Shkarin in 2010 for the derivative operator by determining which weighted shifts on the space of entire
functions possess a hypercyclic subspace. In the case of Fréchet spaces without continuous norm, we remark
that there exist two types of closed infinite-dimensional subspaces and thus two types of hypercyclic subspaces.
We develop criteria for the existence and the non-existence of hypercyclic subspaces of each of these two types.
These results allow us to answer positively a question posed by Bès and Conejero by proving the existence of
operators with hypercyclic subspaces on each separable infinite-dimensional Fréchet space. Finally, while so far
no characterization of the existence of hypercyclic subspaces in the case of Fréchet spaces is known, we succeed
to obtain a characterization of sequences of operators possessing hereditarily hypercyclic subspaces.

In a second time, we investigate the spaceability of the set of restricted universal series, the notion of
hypercyclicity for a subset and the existence and the non-existence of frequently hypercyclic subspaces. In
particular, we show that, for any Fréchet space non-isomorphic to ω, the existence of a restricted universal
series implies the spaceability of the set of restricted universal series and we exhibit a frequently hypercyclic
weighted shift on lp with a hypercyclic subspace and without a frequently hypercyclic subspace. This latter
example allows us to answer positively an open problem posed by Bonilla and Grosse-Erdmann.
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4 From EMS

4.1 Newsletter

The September issue of the Newsletter of the EMS is on line: http://www.ems-ph.org/journals/journal.php?jrn=news

4.2 Next President of the ERC

Jean-Pierre Bourguignon new president of the European Research Council.
Jean-Pierre Bourguignon, the 2nd president of the European Mathematical Society (1995-98), will be the

next president of the European Research Council (ERC). Professor Bourguignon was nominated for this position
by the EMS to a search committee set up by the European Commission.

Since 2007, the ERC has funded European top researchers through grants (ERC starting grants, consolidator
grants, advanced grants, proof of concept and synergy grants) given on the base of applications that are evaluated
by expert panels. In Horizon 2020, the ERC appears as a crucial component in the EU long-term research
strategy to support the most talented and creative scientists in blue-sky research.

As a mathematician, Jean-Pierre Bourguignon is well known for his contributions to modern differential

geometry. He was the president of the French Mathematical Society SMF (1990-1992). Since 1994, and until

his retirement in August 2013, he has served mathematicians and physicists all over the world as director of the

prestigious research centre Institut des Hautes Études Scientifiques at Bures-sur-Yvette close to Paris.

Through his remarkable activity, Jean-Pierre Bourguignon has promoted collaboration between mathemati-

cians and researchers from other sciences. He also has been enthusiastically involved in activities raising the

public awareness of mathematics, like films and exhibitions.

The EMS congratulates him very warmly for this achievement and looks forward with great pleasure to good
benefits for the ERC and for science in Europe under his leadership.

The European Mathematical Society

4.3 Call for nominations or proposals

Call for nominations or proposals

of speakers and scientific events in 2014

The EMS has published the call for nominations or proposals of speakers and scientific events in 2014.
Information on the calls and on the submission procedure is given at

http://www.euro-math-soc.eu/node/3266

Deadlines for distinguished speakers: December 30, 2013.

5 Miscellaneous

L’asbl “Teach For Belgium” recrute! Pour en savoir plus à notre sujet, rendez-nous visite sur teachforbel-
gium.org. Vous avez jusqu’au 24 novembre pour postuler.

A bientôt.
L’équipe de Teach For Belgium

6 History, maths and art, fiction, jokes, quotations . . .



Les formes qui se déforment, la topologie Vicente Muñoz RBA, 2013, (175 p.), ISBN 978-2-
8152-0476-7, hbk.
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Since physicists started looking for a unifying theory, we
know that our world needs more than the three dimen-
sions that were needed to describe space. Since Ein-
stein introduced space-time, we also know that the met-
ric need not be positive definite, and with strings and
M-theory, we are up to 11 and more dimensions. But
how could to find out what kind of geometry we should
use just thinking of the space we live in and what is the
shape and the future of our universe?

Vicente Muñoz, has agreed with the publisher of Le Monde to prepare a volume in their series
Le monde est mathématique with the purpose to give the non-mathematician a glimpse on how one
could conceive the shape of our spatial universe. The answer is approached from a topological-
geometrical point of view. So there is no in depth fiddling with physics, strings or membranes to
confuse the reader. Limited by our senses, we experience locally our environment as a Euclidean
three-dimensional space meaning that we live on a manifold. But there is local and there is local
at a cosmic scale. So perhaps it is not Euclidean in a global picture. Unfortunately, it is difficult
for us to “visualize” a global higher-dimensional picture of the world we live in. Things we are not
able to explain may be obvious for a higher-dimensional creature observing us from its hyperspace.

Chinese view:
giant turtle carries the world

E. Abbott Abbott in his novella Flatland (1884) has evocated what
this higher-dimensional creature would experience observing our help-
less discussions from its point of view. By reducing the dimensions,
Abbott places the reader in the hyperspace of Flatland. He describes
how flat geometrical creatures would think while they live in a 2D
plane, unaware of the ambient 3D world. Besides this geometrical
insight, the novella was also a satire of society at the end of the 19th
century. A. Square, living in this 2D world succeeds in thinking “out
of the plane”, thereby using models of a lower-dimensional Lineland
and even Pointland. He is able to grasp an external Spaceland’s view

of his world inspired by a sphere visiting Flatland. It doesn’t end well for A. Square, but that is a
different non-mathematical lesson that Abbott wants to teach us.

Muñoz has picked up Abbott’s idea and tells us how Carrée (A. Square) who is living in Plateville

in Flatland would try to answer the questions formulated above for his 2D world. Helped by his
compatriots he is able, using local geometrical experiments, to find out about the global topology
of their world. That leaves them with only a few possibilities. Then, by analogy, similar ideas are
lifted to our 3D experiences in the second part of the book.

Einstein’s curved space

In a first chapter we are reminded of historical discussions about
the form of planet earth, which has now eventually been recognized as
being approximately spherical. But what is the form of the universe?
We live on a 3-manifold in a higher-dimensional space, but what is
its global form? What topology does it have? We usually agree on
the hypothesis that the universe has no limit (there is no boundary).
Carrée, living on the surface of a sphere does not experience a boundary,
yet a sphere is compact. So what about the topology our universe?
Another hypothesis, based on Big Bang theory is that the universe is
homogeneous. Matter is distributed approximately uniformly. And this has also an influence on
its geometry. Thus it is a mathematical challenge to find and classify all varieties that have these
three properties: no boundary, compact, and homogeneous. How would Carrée solve this in 2D?



So suppose Carrée tries to explore his spherical world and, starting in a point A, follows a
straight path North (a meridian in his world). Then he will pass through the North Pole, through
the antipode of A, the South Pole and end up in A. No boundary was met. Repeating the
experiment, starting in B, East of A, then the two paths will intersect in exactly two points (North
and South Pole). The same will happen for any two different straight lines (i.e., great circles which
are the geodesics on a sphere). There are always two points of intersection. There are no parallel
lines. Suppose that Carrée and Pentagone both start at point A in different directions following
a straight line, but that except for point A, there has been no other spot they both visited on
their tour around the world, then their world can not be spherical. There must be a ‘hole’ in the
manifold and their world is not a sphere, but a torus, or it might even be a more complicated form
with more than one hole. After all his traveling Carrée can produce an atlas, consisting of pages
that reflect the local geometry and that link to each other (leaving page x at the top means entering
page y from the bottom etc.). A Möbius band world is one-sided and would only be possible if a
globe-trotter would return to his starting point as a geometrical inverse of himself, but that idea is
abandoned and considered to be the product of the imagination of 2D science fiction authors.

torus bottle of Klein

The next chapter introduces some topo-
logical definitions such as orientability, bot-
tle of Klein, boundary, homeomorphism, the
classification problem etc. Also the Euler-
Poincaré characteristic for polyhedra (or
equivalently for a polygonal subdivision of a
map of a surface) is defined: χ = V −E+F
where V is the number of vertices, E the
number of edges, and F the number of faces. This is an invariant, i.e., independent of the number
and form of the patches used to map the surface. It only depends on the topology of the surface.
A sphere has χ = 2, while a torus has χ = 0. The genus g of an orientable surface is defined by
χ = 2 − 2g. Thus a torus has genus 1, a sphere genus 0. A topologist is sometimes characterized
as a mathematician not knowing the difference between a donut and a coffee cup since one may
indeed deform a donut into a mug, the hole in the torus becoming the hole making it possible the
grab the mug with its handle. In this sense, the genus of a surface is the number of handles or holes
it has. Surfaces of genus g ≥ 2 are the result of connecting g tori. And this is all there is for closed
surfaces: a sphere (g = 0), a torus (g = 1) or connected tori (g ≥ 2) according to the classification
theorem.

donut → coffee cup genus 3

Chapter 4 is about geometry of Flatland. What kind of geometries are possible in Flatland

being unbounded, compact and orientable? If the postulate of parallel lines is accepted, then it
follows as a consequence that the sum of the angles in a triangle is 180◦. Thus if Carrée does
not measure this, then, Euclidean geometry is excluded and it means that Flatland is not a plane.
If Flatland is a sphere, then the sum of the angles of a triangle is 180◦ plus c times its area.
The value of c is related to curvature. In a plane, this is zero, on a sphere it is positive and
constant, but on more general surfaces like a hyperboloid or a torus, this will depend on the local
shape at the position of the triangle, or one may define and average curvature over the surface.



A distinction has to be made between in-
trinsic and extrinsic geometry. In extrinsic ge-

ometry curves on 2D surfaces are studied as
curves in the 3D Euclidean space. But what
can Losange (i.e., Diamond, the geometer of

Flatland) do who is living on the surface, unaware of the ambient space, hence certainly of its
geometry, that contains the surface he is living on? He is restricted to intrinsic geometry where he
can measure angles, and distances, and draw straight lines (a straight line segment is the shortest
path between two points), and draw circles (all points at a constant distance from its center). Dif-
ferential geometry learns that for each point on a 2D surface we can find two orthogonal principal
directions with curvature k1 and k2 respectively. Setting K = k1k2, then this is related to the
constant c mentioned above in the formula for the sum of the angles of a triangle. This is actually
the Gauss-Bonnet theorem: c = 180K/π (the 180/π factor transforms degrees to radians), and
this is not only true for triangles. Summing over all possible triangulations (or subdivisions) of
the surface it follows that 2π times the Euler-Poincaré characteristic equals the average curvature
times the area of the whole surface. Hence the Gauss-Bonnet theorem links local with global ge-
ometry. If Losange cannot or does not want to measure at all points of his world, it is important to
assume that his world is homogeneous and isotropic (isotropic implies homogeneous). That means
that translation and rotation does not change the geometrical properties. With this hypothesis,
Losange may assume that the curvature K in his world is constant. So he has as a consequence of
this theory 3 possibilities: (1) K > 0 and χ > 0: then he lives on a sphere (elliptic geometry), (2)
K = 0 and χ = 0, then his world is a torus, and (3) K < 0 and χ = 2− 2g < 0 then he lives on a
surface of genus g (with hyperbolic geometry).

Now that Flatland is completely explored, by analogy, Muñoz can move on to three-dimensional
geometry and the shape of our universe. The world is now a 3-variety or manifold and people living
there can only make local observations. Unlike the case of Flatland there is not a classification of
all 3-varieties yet. For example studying the simplest one (a 3-ball) was the subject of the Poincaré
conjecture: every simply connected 3-variety without border is homeomorphic to a 3-sphere. It
was formulated in 1904 but only solved by Perelman in 2003.

G. Perelman

Because we cannot visualize things as we did before, we have, just as the
compatriots of Carrée, to rely on an atlas. The pages of our atlas can be thought
of as cubes of which the faces should be glued to faces of other pages. The ways
in which this is done defines the shape of the world (sphere, torus, etc.) with
possible alien side-effects. A torus is the connection of 2 spheres. Both the cup
and the handle are homeomorphic to a sphere. They are connected by cutting
2 holes in each and glueing the holes of the cup to the holes of the handle. For
people thinking that they live on the surface of a sphere (cup), these glueing sections appear to be
‘stargates’ where they can leave their sphere, to re-appear via a parallel sphere (handle) at another
place on their sphere (cup). They will not know when they cross a ‘gate’ because they never leave
the surface of the torus which they mistakingly think of as a sphere. Similarly, one may imagine
‘stargates’ connecting 3-spheres which would allow to take a ‘shortcut’ via a parallel world. But
there are many more 3-varieties and many more possibilities to connect them, which could result
in tori that interlace like knots. Even with the hypotheses of homogeneity and isotropy, (assuming
constant curvature K = k1k2k3), one can imagine different possible geometries. There are of course
the isotropic geometries where the signs of k1, k2, and k3 are the same. For example when they are
all zero, it is Euclidean. But there are five other possible homogeneous geometries like S2 ×R i.e.,
k1, k2 > 0 and k3 = 0 giving rise to an elliptic geometry in 2 dimensions and Euclidean in the third
dimension etc. Not all possibilities have been explored yet, but the reader may have an idea of how
to generalize the strategies developed by Carrée and Losange.



The last chapter is then considering the question: What is the shape of our universe? It will be
clear from what has preceded that there is not a definitive answer to this question yet. Aristotle
thought it was a giant ball with the stars living on the spherical boundary. Riemann was the
first to propose a non-Euclidean geometry for our universe, forcing to consider it as a variety.
Einstein introduced the space-time variety of dimension 4 but here we are only looking at the
space component. It makes sense and is generally accepted that the universe has no border, is
homogeneous, isotropic, and orientable. It being compact is still a point of discussion.

expansion of universe

Cosmological observations give information about the ge-
ometry of the universe. In the Friedmann-Lemâıtre-Robinson-
Walker (FLRW) model of an expanding universe (F) after the
Big Bang (L) it is assumed that the curvature K is constant
and therefore our universe is either a 3-sphere (K > 0), a
Euclidean space (K = 0) or it is hyperbolic (K < 0). Com-
pactness is guaranteed in the first case but it not in the other
two. Since mass changes the curvature K, the future of the
universe will depend on the mass distribution ρ, which changes
during the expansion. There is a critical density ρC for which

K = 0. Thus if ρ > ρC then the expansion of the universe will stop and shrink again until the
Big Crunch. If ρ < ρC expansion will go on until it will end in a Big Rip by loss of gravitational
cohesion or in a Big Freeze by loss of free energy. In the limiting third case ρ = ρC the expansion
will end in some kind of stable situation. So in this model it is important to know the density of
matter. This may be relatively simple for stars, but it is not so simple for dark matter, black holes,
intergalactic dust, etc. Nowadays there are alternatives for the FLRW model.

CMB map observed by WMAP satellite

The space-time universe where K ≤ 0 will not be com-
pact, but this does not exclude that the space component
is compact. If the space geometry is hyperbolic, then there
are many more 3-varieties possible that describe the topol-
ogy than in the other cases. Hence one may reason that
the chance of an hyperbolic space component is larger but
confirmation that this is effectively the case by experimen-
tal observations is as yet not given. Our observation are
always local and confined to the last scattering surface (LSS). Accepting that the universe is 13,76
billion years, and given the speed of light, but taking into account the expansion of the universe,
this means that the the LSS is a ball of diameter 93 billion light-years and growing. If the universe
is larger, there is no hope that we shall ever be able to determine its global topology in this way.
We observe this LSS by measuring the Cosmic Microwave Background (CMB), i.e., the afterglow
of the Big Bang. Observations of the Wilkinson Microwave Anisotropy Probe (WMAP) by NASA
and the Planck project by ESA seem to be in correspondence with an expanding flat homogeneous
universe but others have a different interpretation.

3D projection of 5D
Calabi-Yau manifold

Vicente Muñoz has done an excellent job in explaining the difference
between geometry and topology for the layman. Although the mathemati-
cal technicalities of these disciplines are quiet complicated, all of this is well
hidden in this account about what these disciplines can learn us and what
are still open problems in trying to give answers to fundamental questions
related the shape of our universe. To go beyond space, and understand the
geometrical world of strings, the reader should shift to a much higher gear.
This book will not bring you anywhere near the geometries of Calabi-Yau
manifolds, the birth of which are described in The Shape of Inner Space,

String Theory and the Geometry of the Universe’s Hidden Dimensions (S.-
T. Yau & S. Nadis, Basic Books, 2010). Adhemar Bultheel



Towing Icebergs, Falling Dominoes, and Other Adventures in Applied Mathematics,
2013, Princeton University Press, ISBN 978-0-691-15818-1 (pbk), 175 pp. and
Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics 2012,
Princeton University Press, ISBN 978-0-691-15499-2 (pbk), 304 pp.
both authored by Robert B. Banks.
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Robert B. Banks (1922-2002) has written two marvelous books illustrating what applied math-
ematics really is about. The first one was published in 1998 and the sequel in 1999. These two
hardback versions were available as paperbacks since 2002, but they are now recently reissued in
unaltered form as paperback and as ebooks in the Princeton Puzzlers Series in 2013 and 2012
respectively.

The first book Towing Icebergs and Falling Dominoes sets the tone. In 24 chapters the reader is
bombarded by a firework of models and solutions for serious and amusing problems. The opening
paragraph is typical, giving all the data about the meteor that hit the earth some 50,000 years ago
near Flagstaff (AZ). It induces a chapter on different units, which is useful for the rest of the book.

crater near Flagstaff Darrieus rotor

Although not in a particular order, one might
recognize some recurrent themes in the different
applications, some of them even extend to the sec-
ond book: things (large and small) falling from
the sky (meteor, parachute, raindrops, etc.) but
later also trajectories of basketballs, baseballs,
water jets, and ski jumpers. Other applications
are related to growth models (population, epi-
demic spread, national deficit, length of people,
and world records running, etc.). Some chapters deal with wave phenomena (traffic, water waves,
and falling dominoes), and others with statistics (Monte Carlo simulation) or curves (in architec-
ture, jumping ropes and Darrieus wind turbines).

But this enumeration is far from complete. There are two chapters completely working out the
economic project of towing icebergs from the Antarctic to North and South America, Africa, and
Australia. This includes the computation of the energy needed, the optimal route to be followed, the
thickness of the cables needed, the melting process, etc. And there are too many other phenomena
modelled to enumerate all of them here.

towing an iceberg

The models are sometimes derived, but in many occasions,
they are just given in the form of a differential equation (but
also delay differential equations and integro-differential equa-
tions appear). It is indicated how to obtain solutions (often
analytic, sometimes numerical), but intermediate steps are left
for the reader to check. At several places also suggestions for
assignments or extra problems to work out are included. His-
torical comments ad suggestions for further reading are often
summarized.



In the second volume Slicing Pizzas and Racing Turtles, the format of the previous book is
continued. There are now 26 chapters and the number of pages is almost doubled. We recognize
some topics like falling raindrops (if one has to move from A to B in the rain, should one move
at a particular speed to get as little wet as possible?) curves (the pursuit curves of a turtle A
pursuing turtle B, the lenght of a baseball seam) and growth models (world population, spreading
of technology).

Some problems are of real life interest, for example how can the spherical earth be represented
on a two-dimensional map? Others are more of a mathematical nature featuring π, e and friends,
and also some number sequences turn up as the usual suspects. Some topics are more recreational:
How many pieces can one obtain if a pizza is cut by n straight line cuts? How much blue, white
and red is in the American flag?

Sometimes the fantasy takes the proportions of a Jules Verne novel: What would be the period
of oscillation if one fell through a shaft that goes through the center of the earth? What would
happen if all the ice of the earth melted, how many people have ever lived on this planet and how
many times have they consumed all the water that there is?

a hole through the earth cutting pizzas running in the rain turtle racing

In all these problems (and many that I did not mention), mathematics are central, although
the models and techniques are not always completely explained. A minimal requirement to catch
most of the details is some knowledge of differential equations (usually linear and first order but
sometimes going beyond these), integrals are clearly needed (even elliptic integrals are used). The
non-mathematician can be fascinated, but will probably not always appreciate the meaning of some
of the problems solved. My impression is that the level of assumed knowledge is not always uniform:
some aspects are explained in too much detail and may be a bit boring for a skilled mathematician,
others are not explained and may be difficult for the lesser skilled reader.

The books stand out because the examples are all treated as real-life examples with real data,
and taking into account all the complications that are usually left out in academic examples: the
earth is not a perfect sphere, a baseball is rough because of its stitches, it is thrown with spin,
there is resistance of the air, and the resistance differs with the height, etc. Even though, there is
a lot of formulas and numbers, the reading is pleasant and smooth. It may be much harder if one
wants to work out the details and/or the exercises for oneself. A mathematics teacher may find
some interesting mathematical projects to be worked out in the classroom.

The edition is still the same as the original one. That means that references are still the older
ones that have not been updated. Robert B. Banks has passed away some 10 years ago. If not,
given his enthusiasm displayed in this book, I would have expected an update about the models for
economic evolution, taking into account the financial problems of the banks starting in 2008 and
the aftermath of the economic crisis that we are still living in today, or perhaps also data about
the tsunami that hit Japan in 2011 with the nuclear disaster of Fukushima as a consequence, or
the impact and fall-out of the eruption of the Eyjafjallajökull vulcano in 2010. Perhaps someday,
some creative author will add a third volume to this wonderful collection of applied problems.

Adhemar Bultheel


